
IBM Manufacturing Systr
Software Library

AML/Entry Version 4 User's Guide
(Second Edition)

Warning: This equipment generates, uses, and can radiate
radio frequency energy which may cause interference to radio
communications. Operation of this equipment in residential area
is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be
required to correct the interference.

Second Edition (August 1985)

Use this publication only for the purpose stated in the Preface.

The following paragraph does not apply to the United Kingdom or
any country where provisions are inconsistent with local law:

International Business Machines Corporation provides this
publication "as is" without warranty of any kind, either
expressed or implied, including, but not limited to the implied
warranties of merchantability or fitness for a particular
purpose.

Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement
may not apply to you.

This publication could contain technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein: such changes will be incorporated in
subsequent revisions or in Technical News Letters. IBM may make
improvements and/or changes in the product(s) and/or program(s)
described in this publication at any time.

It is possible that this publication may contain reference to,
or information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below.
Requests for copies of this publication should be made to your
IBM representative or IBM branch office serving your locality.

The following paragraph applies only to the United States:

A reader's comments form is provided at the back of this
publication. If the form has been removed, address your
comments to IBM Corporation, RS Information Development,
Department 9C9, P.O. Box 1328, Boca Raton, Florida, 33432. IBM
may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation
whatsoever.

Copyright International Business Machines Corporation 1985

SAFETY NOT ICES

Safety precautions should always be observed by all personnel operating
or servicing the IBM Manufacturing System. As with any
electromechanical machine, unpredictable failures can occur while the
system is in operation. Since the manipulator arm moves with such force
and speed, serious injury could result from failure to observe caution
whenever the work area is penetrated. Power to the manipulator must
always be removed first. Keep this in mind when performing any
maintenance or service on the system. Also:

• Ensure compliance to all local and national safety codes for the
installation and operation of the system.

• Observe power and grounding instructions.
• The system must not be installed in an explosive atmosphere.
• Observe safe access routes to and from the system.
• Consider installing intrusion devices or safety mats around the

manipulator to drop power if the work area is penetrated.
• Utilize signs around the system when servicing it to alert others to

potential hazards.
• Consider installing additional emergency-off switches for feeders

and other fixtures.
• Stay out of the manipulator work area when power is on. The

manipulator arm moves rapidly with a lot of force.
• Always wear safety glasses around the manipulator.
• Remove watches and jewelry when servicing the system.
• Use the Stop pushbutton on the control panel to stop the

manipulator in emergencies.
• Always check the work area for adequate clearance before applying

power. Be absolutely sure no one is in the manipulator work area.
• All personnel working with the system must have (as a minimum)

instructions on:
— Safety devices for the system.
— Use of safety devices. Safety procedures should be practiced to

ensure familiarity.
• Fire extinguishers must be located within easy access.

Safety Notices iii

iv 58X7338

•

PREFACE

The First Edition of AML/Entry Version 4 User's Guide contained new and
updated information to be used in conjunction with the First Edition of
AML/Entry Version 3 User's Guide. 	This publication is the Second
Edition of AML/Entry Version 4 User's Guide. 	It contains all the
information needed to use it as a stand-alone document. This
publication also discusses the new features of AML/Entry Version 4.1.
The new features include:

• Mathematical operations on counters (see "Expressions" on
page 4-48).

• Built-in functions (see "Built-in Arithmetic Functions" on
page 4-50).

• Support of the 7545 with RPQ R00107 (Extended Reach and Symmetrical
Workspace).

• Enhancements to XREF (see "XREF Program" on page 2-34 and "XREF
Program" on page 4-89).

• An improved version of COMSAMPL, entitled COMAID (see "COMAID" on
page 8-14).

• A new host-end communications tool, entitled AMLECOMM, which
facilitates the IBM Personal Computer or IBM Industrial Computer
based cell control (see "AMLECOMM" on page 8-30).

Existing AML/Entry Version 4 applications are entirely upward compatible
to AML/Entry Version 4.1. Existing AML/Entry Version 4 applications may
be compiled and downloaded with the AML/Entry Version 4.1 system without
requiring any modifications. Compiled programs now take between 3% and
7% more space than the programs compiled with the Version 4.0 compiler.
The execution speed is virtually the same.

RELATED DOCUMENTS

• The IBM Manufacturing System Site Preparation manual for your
system. This document contains information about preparing the site
for the application.

• The IBM Manufacturing System Maintenance Information manual for your
system. This document provides instructions for the setup and
repair of the manufacturing systems.

• The IBM Manufacturing System Specifications Guide, 8577126. This
document contains a description of the hardware and hardware
specifications.

Preface v

Review the system description and specifications to determine the
capability of the system before you plan your application.

vi 58X7338

CONTENTS

Chapter 1. Introduction 1-1
How To Use This Manual 1 - 1

Chapter 2. Getting Started on the IBM Personal Computer 2 - 1
Environmental Consideration for the IBM Personal Computer 2-2
Minimum IBM Personal Computer Requirements 2-2
Configuration of the IBM Personal Computer 2-3
Display 2-3
Keyboard 2-3
System Unit 2-4
Printer 2-4
Communications 2-4

The Display 2-5
Contrast and Brightness Controls 2-5
Cursor 2-5

The Keyboard 2-6
Keys 2-6
Enter Key 2-6
Cursor Keys 2-6
Control/Alternate/Delete Keys 2-7

The System Unit 2-8
On/Off Power Switch 2-8
In-Use Light 2-8
Drive Door 2-8

The Printer 2-9
On/Off Power Switch 2-9
Control Switches 2-9
Control Lights 2-9

Creating Self-Booting AML/Entry diskettes 2-10
How to Insert Diskettes 2-11
Copying DOS and AML/Entry Shipped Diskettes on to Work Diskettes 2-12
Copying DOS and AML/Entry Diskettes on to a Fixed Disk 2-15
Making Backup Copies of the AML/Entry Work Diskettes 2-17
Some Words About Files 2-17
Some Words about Diskettes 2-19
How to Handle/Store Diskettes 2-20

Loading the AML/Entry Self-Booting Work Diskette 2-21
Method 1 (Power Switch OFF) 2-21
Method 2 (System RESET) 2-22

Using the AML/Entry Programming System Menu 2-23
Option 0 (Return to DOS) 2-24
Option 1 (Edit/Teach a Program) 2-25
Option 2 (Compile a Program) 2-26
Load File (.ASC) 2-26
Compiler Phase Messages 2-26
Displayed Information 2-26
Compiler Errors 2-26
Listing File (.LST) 2-27
Symbol File (.SYM) 2-27

Contents vii

Option 3 (Load a Program to the Controller) 2-28
Option 4 (Unload a Controller Program) 2-29
Option 5 (Set System Configuration) 2-30
Option 6 (Set Name and Options) 2-32
Option 7 (Communicate with controller) 2-33
Option 8 (Generate Cross Reference Listing) 2-34
XREF Program 2-34

DOS Batch Support 2-36
Invoking the Compiler 2-36
Loading/Unloading a Program to the Controller 2-36

Example Batch Program 2-37
AML/Entry Utility Programs 2-38

Chapter 3. Using the AML/Entry Editor 3 - 1
Full Screen Editing 3-1
File Specification Line 3-2
Primary Commands 3-2
Date 3-3
Message Display 3-3
Top of File/Bottom of File 3-3
Line Commands 3-3
Line Numbers 3-3
Function Key Settings 3-3
20-Line Program Window 3-3

Keyboard Usage for the Editor 3-4
Function Key Settings 3-4
Help Screens 3-4
Special Keys 3-6
Numeric Keypad 3-7
Control Keys 3-8

Setup for Editor Exercises 3-9
Getting to the Editor from the Main Menu 3-9
Exiting the Editor 3-10

Exiting the Editor for the First Time 3-10
Recalling the Practice Program 3-10
Exiting the Practice Program After You Name It 3-11

Information About Line Commands 3-11
Line Command Conflicts 3-12
Line Commands that Cross Screens 3-12
Using the Line command I (Insert) 3-13
Using the Line Commands D and DD (Delete) 3-15
Using the Line Commands M, MM, with A Or B (Move with After or
Before) 3-18
Using Line Commands C, CC, with A or B (Copy with After or
Before)

Using the
Information
Using the
Using the
Using the
Using the
Using the
Using the
Using the
Using the
Using the

3-22
Line Command R (Repeat) 3-26
About Primary Commands 3-30
Primary Command FIND 3-32
Primary Command CHANGE 3-36
Primary Command LOCATE 3-42
Primary Command SAVE 3-44
Primary Command FILES 3-46
Primary Command ? (Recall) 3-48
Primary Command RENAME 3-50
Primary Command GETFILE 3-52
Primary Command PUTFILE 3-53

viii 58X7338

Using the Primary Command PRINT 3-54
Using the Primary Command DEL (Delete) 3-56
Using the Primary Command CANCEL 3-57
Using the Primary Command CAPS 3-58

Chapter 4. Learning the AML/Entry Language 4 - 1
A Structural Overview 4-2
Language Structure 4-2
Your Application Program in the Controller 4-2
Comments 4-2
Beginning and Ending Your Program 4-3
Line Number 4-4
Identifier 4-4
Definition Operator 4-5
Keyword/Command 4-5
Statement Delimiter 4-5

AML/Entry Reserved Words and Commands 4-6
AML/Entry Reserved Words 4-6
MOTION Commands 4-8
DELAY Command 4-8
DPMOVE Command 4-8
GETPART Command 4-9
GRASP Command 4-9
LEFT Command (Valid on 7545-800S Only) 4-9 .
LINEAR Command 4-11
PAYLOAD Command 4-11
PMOVE Command 4-12
RELEASE Command 4-12
RIGHT Command (Valid on 7545-800S Only) 4-13
XMOVE Command 4-13
ZMOVE Command 4-13
ZONE Command 4-13
Using Motion Statements 4-14
Using Move, Z-axis, Delay, and Gripper Commands 4-14
Using Linear, Speed, and Precise Motions 4-16

SENSOR Commands 4-17
CSTATUS Command 4-17
GUARDI Command 4-18
MSTATUS Command 4-19
NOGUARD Command 4-20
TESTI Command 4-20
WAITI Command 4-20
WHERE Command 4-21
WRITEO Command 4-21

Using Sensor Statements 4-21
FLOW-OF-CONTROL Commands 4-23
Labels 4-23
BRANCH Command 4-24
BREAKPOINT Command 4-24
ITERATE Statement 4-24
TESTI Command 4-25
Using Flow-of-Control Commands 4-26

Techniques to Simplify Programming 4-28
Multiple Statements on a Line 4-29
Declarations 4-30
Using Declarations 4-30

Contents ix

Constants 4-31
Declaring Constants 4-31
Local Constants 4-32
Global Constants 4-32
Global vs. Local Constants 4-32
Using Constants 4-32
Using Local Constants 4-33
Using Global Constants 4-34

Aggregate Constants 4-35
Using the ITERATE Command with aggregates 4-35

Variables 4-38
Declaring Variables 4-38
Counters 4-39
Round-Off Error 4-39

COUNTER Commands 4-41
DECR Command 4-41
INCR Command 4-41
SETC Command 4-41
COMPC Command 4-42
TESTC Command 4-43

Using Counter Statements 4-43
PT's Defined in Terms of Formals and/or Counters 4-44
Group 4-45

Indexing 4-46
Using Groups with 7545-800S 4-47

Expressions 4-48
Built-in Arithmetic Functions 4-50
Commands That Allow Expressions 4-54

Example Applications Using Expressions 4-55
Circular Motion 4-55
Treating DI As Integers 4-56
Determining the Row and Column of a Part in a Pallet 4-57
Compiler Directives 4-58
Using the Include Compiler Directive --%I 4-58
Using the Page Compiler Directive --%P 4-59

Subroutines 4-60
System Subroutines 4-60
User Subroutines 4-60

User Subroutines in the AML/Entry Program 4-61
Development of User Subroutines 4-61

Formal Parameters in Subroutines 4-63
Parameter Passing 4-63
Example of Subroutine with Formal Parameters 4-63

Restrictions on Parameters 4-64
Formal Parameter Names Restrictions 4-64
Actual Parameter Assignment Restrictions 4-64

Using Subroutines 4-65
Using Subroutines without Parameters 4-65
Rules for Calling Subroutines 4-66
Using Subroutines with Parameters 4-68
Using the ITERATE command to Repeat a Subroutine 4-70

Ownership and Multiple Name Occurrence 4-72
Additional Topics For Program Enhancement 4-74
Pallet 4-74
Pallet Description 4-74

PALLETIZING Commands 4-77

x 58X7338

GETPART Command 4-77
NEXTPART Command 4-77
PREVPART Command 4-78
SETPART Command 4-78
TESTP Command 4-78
Using Palletizing Statements 4-79
Palletizing and Formal Parameters 4-79

Region 4-82
REGION Command 4-84
XMOVE Command 4-84
REGION Coordinate Generation 4-84
X and Y Coordinates 4-84
Z Coordinate 4-84
Roll Coordinate 4-85
Using REGIONS 4-85

Host Communications 4-87
GET Command 4-87
PUT Command 4-88
Variable Identification 4-89

XREF Program 4-89
Pallet and Region Listings 4-90

Chapter 5. Writing AML/Entry Programs 5 - 1
Good Program Structure 5-1
Writing a Simple AML/Entry Program 5-3

Sample Application 5-3
Application Program Comparison 5-4

Writing a Complex AML/Entry Program 5-7
Main Application Task 5-7
Printed Circuit Card 5-7
Manipulator Gripper 5-7
Component Feeders 5-7
Interaction with a Host Computer 5-8
Application Flow 5-9

Define Global Data Types 5-10
Taught Points 5-10
Digital Input and Digital Output 5-11
Constants 5-13
Variables 5-13

Define the Global Subroutines 5-14
Utility Subroutines 5-14
Movement Subroutines 5-17
Gripper Subroutines 5-18
Parts Handling Subroutines 5-19
Initialization Subroutine 5-22
The Main Subroutine 5-24

Chapter 6. Using the AML/Entry Teach Mode 6 - 1
Teach Mode 6-3
Function Keys 6-5
Special Keys 6-6
Read DI/DO Points 6-8
Initial Setting of Motion Parameters for Safety 6-8
Set Motion Parameters in Teach Mode 6-9
Exiting the Digital Output Control Utility in Teach 6-9
IBM Manufacturing System Teach Responses to Previous Conditions 6-10

Contents xi

6-10

Move) 6-11
Manipulator

)40
Condition 1 (Manipulator Power Off) 6-10
Condition 2 (Manipulator Power On, Return Home Performed)
Condition 3 (Exit Teach) 6-11
Condition 4 (Exit Teach, Remain in Editor - Control Panel
Condition 5 (Exit Teach, Remain in Editor after
Move) 6-13

Teach Mode Exercises 6-14
Power-Up Sequence for Teach Exercises 6-15
Coarse Movement 6-17
Precision Movement 6-18
Entering Known Coordinates 6-19
Return Point Value to Program (Recall) 6-21
Obtaining an Additional Point 6-22
Retrieving a Point from a Program 6-23
Controlling Digital Output (DO) from Teach 6-28
Changing Manipulator Arm Mode 6-29

Removing Power after Teach Exercises 6-30

Chapter 7. Operating the Manufacturing System 7 - 1
Controller 7-2
Power On/Off Switch/Circuit Breaker 7-2
Power On Light 7-2

Control Panel 7-3
System Power-Up Sequence 7-10
Manual and Automatic Stopping of the Manipulator 7-12
Power-Off SeqUence 7-13
Controller Storage Management 7-14
Compile and Load an Application Program 7-16

Bringing Up the AML/E Menu On a Standard PC 7-16
Bringing Up the AML/E Menu On a PC With a Fixed Disk 7-16
Bringing Up the AML/E Menu On a PC/AT 7-17

Testing Application Programs in Manual Mode 7-22
Manual Operation of the Manipulator 7-23
Manual Mode Control of Axis Motors, Z-Axis, and Gripper 7-24
Automatic Operation 7-24
Starting an Application Program in Automatic Mode 7-25
Resuming an Application Program from a Breakpoint 7-26
Clearing Error Conditions 7-27

Chapter 8. Communications 8 - 1
Communications Hardware Interface 8-2

Controller Communications Connector 8-3
Communication Startup Sequence 8-3

Communication Capabilities 8-4
Data Drive Mode 8-8

Controller States 8-8
Xon State 8-8
Xoff State 8-8
Waiting for Xon (Wxo) State 8-9
Xoff Time-Out (Xto) State 8-9

Transitions Between States 8-9
Simple State Transitions 8-9
Complex State Transitions 8-10

COMAID 8-14
P - Display the last 51 communication transactions 8-14
L Load a Program to the Controller 8-15

xii 58X7338

•

•

U - Unload Controller Partition 8-15
R - Transmit Read Command 8-15
X - Transmit Execute Command 8-16
D - Controller Initiated Communications 8-17
C - Control Executing Program 8-19
T - Transmit Teach Command 8-20
F - Execute a Command File 8-20
DOS Command Line Processing 8-21

Debugging AML/E Applications 8-23
Using Read Requests 8-23
Reading the Machine Status 8-23
Reading the Current Instruction Address 8-25
Reading Specific Program Variables 8-26
Reading Other Values 8-26

Using Control Requests 8-26
Suspending Program Execution 8-26
Restarting Program Execution 8-27
Executing Until the Next Terminator 8-27
Setting a Debug Breakpoint 8-27
Resetting the Controller 8-28
Changing Variable Values in Controller Memory 8-29

AMLECOMM 8-30
Introduction to the AMLECOMM System 8-30
The AMLECOMM System Files 8-30
Installation Procedure 8-31
Interpreter vs. Compiler 8-32
AMLECOMM Line Numbers 8-32
Using Compiler Basic 8-33
Using BASICA 8-33

Initialization and Configuration Parameters 8-34
Calling AMLECOMM 8-36
The Transaction Buffer - BUFFER.A$ 8-51

Appendix A. Command/Keyword Reference A - 1
A A-2
ABS A-3
ATAN A-4
ATAN2 A-5
B A-7
BRANCH A-8
BREAKPOINT A-9
C A-11
CANCEL A-12
CAPS A-13
CC A-14
CHANGE A-15
COMPC A-17
COS A-19
COUNTER A-20
CSTATUS A-22
D A-24
DD A-25
DECR A-26
DEL A-28
DELAY A-29
DPMOVE A-30

Contents xiii

END A-32
FILES A-33
FIND A-34
FROMPT A-35
GET A-36
GETFILE A-37
GETPART A-38
GRASP A-40
GROUP A-41
GUARDI A-43
I A-45
INCR A-46
ITERATE A-48
LEFT A-50
LINEAR A-51
LOCATE A-53
M A-54
MM A-55
MSTATUS A-56
NEW A-58
NEXTPART A-59
NOGUARD A-61
PALLET A-62
PAYLOAD A-65
PMOVE A-67
PREVPART A-68
PRINT A-70
PT A-71
PUT A-72
PUTFILE A-73
R A-75
REGION A-76
RELEASE A-79
RENAME A-80
RIGHT A-81
SAVE A-82
SETC A-83
SETPART A-85
SIN A-87
SQRT A-$8
STATIC A-89
SUBR A-90
TAN A-92
TESTC A-93
TESTI A-94
TESTP A-96
TRUNC A-98
WAITI A-99
WHERE A-100
WRITEO A-101
XMOVE A-102
ZMOVE A-104
ZONE A-105
? A-107
--%I A-108
--%P A-109

xiv 58X7338

Appendix B. AML/Entry Messages B - 1
Messages Without Numbers B-1
Numbered Messages B-47
AMLECOMM/COMAID Error Messages B-60
MSGCOM.TXT B-66

Appendix C. Values for the LINEAR Command C-1

Appendix D. Values for the PAYLOAD Command D - 1
7545 Program Speed Values For PAYLOAD Command D-1
7545-800S Program Speed Values For PAYLOAD Command D-2
7547 Program Speed Values For PAYLOAD Command D-3

Appendix E. Speed/Weight Values Based on Z Position E - 1
7545 Speed/Weight Relationship based on Z Position E-2
7545-800S Speed/Weight Relationship based on Z Position E-4
7547 Speed/Weight Relationship based on Z Position E-5

Appendix F. Communications Cable Wiring Diagrams F - 1
Local RS-232-C Cable Wiring F-1
Local RS-422 Cable Wiring F-2

Appendix G. Configuration Parameters for AMLECOMM G - 1

Appendix H. Advanced Communications H - 1
Communications Hardware Interface H-2
Controller Communications Connector H-3

Communications Protocol H-4
Transactions H-4
Identifiers H-5
Records and Record format H-6

Identifier H-6
Byte Count H-6
Data H-6
Check Sum H-6
Record Termination H-7

Data Rules H-8
Data Representation H-9
Floating Point Examples H-10
Powers Of Two Table H-14

Data Line Control H-15
Ack H-16
Xoff H-16
Xon H-17
Eot H-17
Nak H-17
Nul H-18

Communication Startup Sequence H-18
Record Descriptions H-19
R - (Read) Record H-19
R 01 - Read Machine Statue H-20
R 02 - Read Reject Status H-21
R 03 - Read Micro-code Level and Machine Type H-22
R 04 - Read Robot Parameter Table H-22
R 08 - Read Current Instruction Address H-23

Contents xv

R 10 - Read DI/DO H-24
R 20 - Read All Program Variables H-25
R 40 - Read Current Position in Pulses H-25
R 80 - Read Specific Program Variables H-25

C (Control) - Records H-26
X (Execute) - Records H-28
N (Compiled Program) - Record H-29
E (End) - Record H-30
D (Data) - Record H-30
T (Teach) - Record H-31

Motion Parameters H-32
Motion Control H-32
Changing Digital Outputs H-33

P (Present Configuration) - Record H-33
Controller-Initiated Communications H-34

PUT Transaction H-34
GET Transaction H-35
DEBUG Transaction H-35

Typical Communications Sequences H-36
Manipulator Stop Cycle Sequence H-37
Application Startup Sequence H-38
Reason For Data Error H-40
Program Transmit Sequence H-41
Unload a Partition H-42
Put Transaction H-43
Get Transaction H-44
Read Transaction H-45
Read Instruction Address H-46
Debug Transaction H-47
Write Controller Data Transaction H-48
Example Application Sequence H-49

Index X-1

xvi 58X7338

CHAPTER 1 . INTRODUCTION

A Manufacturing Language/Entry (AML/Entry) is a manufacturing systen
programming language. It is used with an IBM Personal Computer or ar
IBM Industrial Computer to write, compile, and load programs for the at
7545 and 7547 Manufacturing Systems, including the 7545 with RPQ R0010;
(Extended Reach and Symmetrical Workspace).

The structure of this document orients you in A Manufacturing
Language/Entry and then provides the information necessary to operate
your manufacturing system. It also contains an overall command/keyword
reference and the error messages that pertain to the language and to the
systems.

Note: Throughout this document, the IBM 7545 Manufacturing System with
RPQ R00107 (Extended Reach and Symmetrical Workspace) will be referred
to as the "7545-800S". The software, however, refers to this system as
the "7545-S". Both of these terms have been adopted as a matter of
convenience.

HOW TO USE THIS MANUAL

This manual is designed to be used both as a teaching manual and a
learning manual. The first chapters teach you how to use AML/Entry
Version 4 to create programs for use by IBM Manufacturing Systems.
These chapters are outlined below:

• Chapter 2, "Getting Started on the IBM Personal Computer," teaches
you how to use the Personal Computer to create work diskettes and
then to load the AML/Entry system.

• Chapter 3, "Using the AML/Entry Editor," is a series of exercises
that teach you how to use the AML/Entry editor.

• Chapter 4, "Learning the AML/Entry Language," teaches you how to use
AML/Entry Version 4. Chapter 4 begins by teaching you how to use
basic AML/Entry commands. After you have learned these basic
commands, the chapter proceeds to more complex subjects. This
approach allows you to start using AML/Entry right away and then tc
proceed to more difficult concepts at your own pace.

• Chapter 5, "Writing AML/Entry Programs," gives examples of AML/Entry
Version 4 programs along with hints on how to write application
programs that are easy to understand.

• Chapter 6, "Using the AML/Entry Teach Mode," teaches you how to use
the Personal Computer to move the manipulator arm to points within
the workspace. You are taught how to =connect the Personal Computer
to the manipulator and how to control the manipulator movement fron
the Personal Computer.

Chapter 1. Introduction

• Chapter 7, "Operating the Manufacturing System," teaches you how to
operate the manufacturing system and the different functions of the
operator control panel.

• Chapter 8, "Communications," describes the communications interface
between the IBM PC and the controller. The description is divided
into two main sections: the first describes COMAID, the second
describes AMLECOMM. Advanced communications topics are discussed in
Appendix H, "Advanced Communications."

• Appendix A, "Command/Keyword Reference," is an alphabetical listing
of the AML/Entry commands and keywords. A description of each
command is given.

• Appendix B, "AML/Entry Messages," contains a description of each of
the messages that you can receive when using AML/Entry Version 4.

Appendices C through E contain manipulator specification
information: LINEAR values, PAYLOAD values, and speed/weight
values.

• Appendix F, "Communications Cable Wiring Diagrams," contains the
diagrams for the two communications cables that can be used.

• Appendix G, "Configuration Parameters for AMLECOMM," contains a
listing and description of the configuration parameters that
AMLECOMM uses.

• Appendix H, "Advanced Communications i " contains a description of the
AML/Entry communications protocol. Example transactions are given
to illustrate the protocol.

1-2 58X7338

CHAPTER 2. GETTING STARTED ON THE IBM PERSONAL COMPUTER

This chapter describes how to get started on the IBM Personal Computer
as applied to IBM Manufacturing Systems. Before you proceed in this
chapter, you should become familiar with the Guide to Operations and the
Disk Operating System (DOS) documentation provided with your IBM
Personal Computer.

Chapter 2. Getting Started on the IBM Personal Computer 2-1

ENVIRONMENTAL CONSIDERATION FOR THE IBM PERSONAL COMPUTER

Refer to the documentation for your Personal Computer.

CAUTION

Operating your IBM Personal Computer in an
environment outside the design parameters for
extended periods can damage it.

IN-USE CONDITIONS

15.6-32.2
°
 Celsius

60-90
°
 Fahrenheit

8-80% Relative Humidity

STORAGE CONDITIONS

10-43
°
 Celsius

50-110
°
 Fahrenheit

8-80% Relative Humidity

MINIMUM IBM PERSONAL COMPUTER REQUIREMENTS

AML/Entry personal computer requirements are outlined below.

• A black and white, monochrome, or color display (80 column) with the
correct adapter card.

• A minimum of 192 Kbytes of memory, 256 Kbytes of memory is
recommended.

• An asynchronous communications adapter.

• The IBM Disk Operating System (DOS) Version 2.0 or higher and
supporting documentation.

• Either two dual-sided diskette drives, one dual-sided diskette drive
and one fixed-disk drive, or one high density diskette drive (PC
AT).

• Spare diskettes required to save application programs created on the
system.

A printer is recommended, but not required. The printer is useful for
listing programs, and for printing error messages while debugging
programs.

2-2 58X7338

CONFIGURATION OF THE IBM PERSONAL COMPUTER

A typical connector arrangement for the IBM Personal Computer, when it
is configured for IBM Manufacturing Systems, is shown below. The exact
location of each connector may be different on your system.

Video power System power Keyboard Parallel printer Communication
(IBM monitor) connector connector

The following is a brief explanation of the equipment that makes up an
IBM Personal Computer system. Each piece of equipment will be discussed
in detail following this section.

Display

The display, or monitor, is similar in structure to a television set.
It is used to display information being sent to and stored in the system
unit of the computer.

Keyboard

The keyboard is like a typewriter. It is the device used to send
information to the system unit.

Chapter 2. Getting Started on the IBM Personal Computer 2-3

System Unit

The system unit is the main part of your computer setup. It processes
information that is sent to it. The system can be tailored to your
needs by the addition of various devices.

Printer

The IBM 80 CPS Matrix, IBM Color, or IBM 5533 Industrial Printers are
optional peripherals which may be used to produce hardcopy outputs of
your information and programs.

Communications

An asynchronous communications adapter is a tool used for communication
between your Personal Computer and the manufacturing system. The main
use of the communications adapter is for downloading programs and for
controlling the manipulator during the teach mode of the AML/Entry
language.

THE DISPLAY

The IBM display is similar to a television set. It can be monochrome or
color. It is used with the AML/Entry System to display, on its screen,
the information you send to the computer and information stored in the
computer. Generally, it sits on top of the system unit for easier
viewing.

Contrast and Brightness Controls

The IBM display has contrast and brightness controls which are located
on the front, right side of the machine. When you first use the
display, turn the controls fully clockwise and then adjust to your
needs.

Cursor

The cursor is mentioned in many places of this document. The cursor
appears on the screen of the IBM Personal Computer as a flashing
underscore (_). The cursor lets you know where the next keyboard
character typed is displayed.

Chapter 2. Getting Started on the IBM Personal Computer 2-5

THE KEYBOARD

As shown below, the IBM Personal Computer keyboard includes a numeric
keypad, a typewriter keypad, and a function keypad

Keys

Keyboard keys are typematic. If you hold down a key, the key repeats as
though it was repeatedly pressed.

The computer allows you to enter 15 characters ahead. This is useful
during the time the computer is accessing a file on a diskette because
it allows you to enter the next instruction without waiting for the
screen prompt. The characters you enter are not displayed until the
prompt is displayed.

The function keys and the numeric keypad may have preassigned functions.
These functions appear at the bottom of the display screen.

Enter Key

The <--J (enter) key, located on the keyboard, is the key most used in
the procedures outlined in this document. It signals the computer that
you have finished entering the line.

Cursor Keys

A set of four cursor keys, located on the numeric keypad, is used to
move the cursor in the direction of the arrow shown on each key. You
are able to type over an incorrect character after positioning the
cursor underneath it. Cursor keys are shown in the following figure.

2-6 58X7338

Control/Alternate/Delete Keys

The CTRL, ALT, and DEL keys, located on the keyboard, are used when
loading a self-booting diskette with the power switch ON.
Simultaneously pressing these three keys cause a system reset. System
reset clears computer memory and reloads a self-booting diskette.

Chapter 2. Getting Started on the IBM Personal Computer 2-7

THE SYSTEM UNIT

The System Unit is the main part of your Personal Computer. A choice of
optional circuit boards allow you to meet your needs. These circuit
boards are plugged into the system unit's expansion slots. Your input
to the System Unit is through the keyboard.

On/Off Power Switch

The on/off power switch for the system unit is located on the right side
of the machine, towards the back. It is used to power the system unit
on and off.

in - Use Light

An in-use light is located on the front panel of the disk or diskette
drive in the front of the system unit. The light is on when the
computer reads information from the drive.

Drive Door

The drive door is used to open and close the diskette drive. How to
insert and remove diskettes is covered later in this chapter in the
section called "How to Insert Diskettes".

Control
lights

Control
switches

1===,
Control panel

• THE PRINTER

The IBM 80 CPS Matrix, IBM Color, or IBM 5533 Industrial Printers are
optional with the AML/Entry System. They are very useful for making
hardcopies of program listings or other output.

On/Off Power Switch

The on/off power switch is located on the bottom, right side of the
printer (for the IBM 80 CPS Matrix Printer).

Control Switches

For the IBM 80 CPS Matrix printer, the control switches are located in
the control panel on the top of the printer in the front right corner.
There are three switches for line feed, form feed and online mode.
There are similar switches for the IBM Color and 5533 Industrial
printers.

Control Lights

For the IBM 80 CPS Matrix printer, the control lights are also located
in the control panel on the top of the printer. These three lights
indicate when the power is on, when the printer is ready, and if the
paper supply is empty. There are similar lights for the IBM Color and
5533 Industrial printers.

•
Chapter 2. Getting Started on the IBM Personal Computer 2-9

CREATING SELF-BOOTING AML/ENTRY DISKETTES

Self-booting AML/Entry diskettes eliminate the requirement that the Disk
Operating System (DOS) diskette be used each time you want to work with
the AML/Entry programs. The self-booting diskette allows you to insert
the diskette and set the power switch to ON, or, with the power ON,
reset the system.

Note: If you are using an international DOS, you must create a
national diskette, as shown in the DOS manual, before you create
self-booting diskettes.

DOS is required to create the self-booting AML/Entry diskettes. DOS is
an IBM program product that provides a standard method to store and
access data on diskettes. DOS is not included with your shipped
AML/Entry diskette.

Self-booting AML/Entry diskettes are created by copying DOS and the
AML/Entry shipped diskettes on to work diskettes. (This procedure is
discussed in a later section of this document.) Three blank diskettes
are required for double-sided drive systems. Your original AML/Entry
diskettes should be retained in a safe place in case something happens
to your self-booting diskettes or to the files on the fixed-disk drive.

The copying of DOS and AML/Entry shipped diskettes on to work diskettes
is accomplished by using AML/Entry's Autoinit program.

Maancri

2-10 58X7338

Insert
Diskette Note Position

of Label

"In Use" Light
(will be on only when
Diskette Drive is
performing a "read" or
"write" function)

How to Insert Diskettes

CAUTION

Damage may result to your diskette drive or
diskette if you attempt to open the drive door
or remove the diskette while the in-use LED is
lit. The diskette should be removed when the
in-use LED is off and before switching system
power off.

When you install a diskette, the drive door must be open and the label
of the diskette must be facing up. The notch along the side of a
diskette must be on the left side as you insert the diskette into the
drive. Insert the diskette into the drive as shown in the figure. Once
the diskette is inserted, the drive door must be closed. The computer
cannot read the diskette unless the door is closed.

Chapter 2. Getting Started on the IBM Personal Computer 2-11

Blank diskettes needed as follows:

PC with dual-sided drive(s) three (3)
XT with a fixed disk none
5531 Industrial Computer

with a fixed disk none
with dual-sided drive(s) three (3)

PC AT
with a fixed disk none
with high-density drive(s) two (2)
with dual-sided drive(s) three (3)

AML/Entry shipped diskettes

DOS diskette

four (4)

Copying DOS and AML/Entry Shipped Diskettes on to Work Diskettes

When you purchased your AML/Entry package, you received four AML/Entry
shipped diskettes. You must merge DOS and the AML/Entry shipped
diskettes to produce AML/Entry work diskettes. AML/Entry's Autoinit
program formats the diskettes and copies, or merges, DOS and the
AML/Entry programs on to the diskettes. The items necessary to create
AML/Entry work diskettes are:

Autoinit is on Volume 1 of the AML/Entry shipped diskettes. Autoinit
produces double-sided diskettes when used on a double-sided drive
system. If your system has a fixed disk drive, see "Copying DOS and
AML/Entry Diskettes on to a Fixed Disk" on page 2-15 for installation
instructions.

Perform the following outlined procedure to make self-booting AML/Entry
work diskettes (the first steps are required to start DOS).

Drive A

2-12 58X7338

System: Power off.

You: Open drive A (left drive).
You: Insert your DOS diskette or an exact copy into drive A.
You: Close drive A.
You: Set the System Unit power switch to ON.

System: Drive A in-use LED comes on after the self-check is complete.
When the DOS diskette is loaded, the drive A in-use LED goes
off and you are asked for the date.

You: Enter the date in the form shown by the prompt.

System: Displays entered date.

You: Press the (enter) key.

System: Screen displays a prompt for time.

You: Enter time using 24-hour clock times. For example,
enter 13:30 for 1:30 pm, or enter 7:24 for 7:24 am.

System: Displays entered time.

You: Press the <--- 1 (enter) key.

System: Screen displays the DOS prompt.

You: Open drive B (right drive).
You: Insert Volume 1 of your AML/Entry shipped diskettes

into drive B.
You: Close drive B.

Drive B

Chapter 2. Getting Started on the IBM Personal Computer 2-13

The next instruction starts execution of the program Autoinit, which is
on your AML/Entry diskette Volume 1. Follow the screen prompts when
asked to press a key or change diskettes.

You: Enter: b:autoinit

System: Screen displays B:AUTOINIT

You: Press the <----I (enter) key.

System: Screen displays prompts.

You: Follow the instructions of the system prompts until complete.
Place diskettes in a drive, remove diskettes, and replace
AML/Entry or DOS diskettes in the appropriate driveas
prompted.

2-14 58X7338

Copying DOS and AML/Entry Diskettes on to a Fixed Disk

This procedure loads the AML/Entry programs on a fixed-disk drive.

Note: Make sure that DOS is installed on your fixed-disk drive
as the "boot" operating system. If you are using international
DOS, make sure that you have installed your national DOS on the
fixed-disk drive.

To load the programs, accomplish the following procedure (the first si
steps are required whenever you need to start DOS).

You: Check that drive A is open.
You: Set the system unit power switch to ON .

System: Fixed-disk drive in-use LED comes on after the self-check
is complete. It goes off when DOS is loaded and you are
prompted for the date.

You: Enter the date in the form required by the prompt.

System: Screen displays entered date.

You: Press the (enter) key.

System: Screen displays a prompt for time.

You: Enter time using 24-hour clock times, For example,
enter 13:30 for 1:30 pm, or enter 7:24 for 7:24 am.

System: Screen displays entered time.

You: Press the <----I (enter) key.

System: Screen displays the DOS prompt.

You: Insert Volume 1 of the AML/Entry diskettes.
You: Close drive A.

Chapter 2. Getting Started on the IBM Personal Computer 2-15

Lift Drive A Push Down

The next instruction starts execution of the program Autoinit, which is
stored on your AML/Entry diskette. Follow the screen prompts when asked
to press a key or change diskettes.

You: Enter: a:autoinit
You: Press the <----I (enter) key.

System: Screen displays prompts until complete.

You have now created the AML/Entry System. The files in the system now
contain both AML/Entry language files and system exercisers for
maintenance (utility programs).

Note: The Autoinit procedure will add the line FILES=12 to the
file CONFIG.SYS on the root directory of the fixed disk.
AML/Entry requires this line to run correctly. If the file
CONFIG.SYS already contains a FILES= line, then the FILES=12 line
will task precedence over the original FILES= line. Thus if you
are using other software which requires a FILES parameter greater
than 12, make sure to edit CONFIG.SYS and change the FILES=12
line. See the DOS reference for more on CONFIG.SYS and the FILES
parameter.

Note: The Autoinit procedure loads the programs to the current
directory designated on the fixed disk (see DOS reference).

2-16 58X7338

Making Backup Copies of the AML/Entry Work Diskettes

You have created the self-booting AML/Entry work diskette(s). Now, make
your backup AML/Entry work diskette copies. The below outlined
instructions are for a system with two diskette drives. For a single
diskette drive, omit the drive names when entering diskcopy.

You: Insert your DOS diskette into drive A (left drive).
You: Close drive A.
You: Enter: diskcopy a: b:
You: Press the (enter) key.

System: Prompts instructions on the screen.

You: Enter Y each time the prompt is displayed until you
have copied each diskette on a formatted blank diskette.

Drive A:, , Drive B:

•

Back-up
Diskette

Getting Started on the IBM Personal Computer 2-17

Some Words About Files

AML/Entry programs are saved in files on disk/diskettes. A file is a
collection of records. In this case, the records are lines of your
program. When you save a program in a file, you assign a name to the
file (filename or filespec) so that you are able to reload the program
later.

Because DOS is used for naming files, you must use DOS rules for naming
your programs. When you name a file to save it or read it back for
further use, you need to adhere to the below listed rules.

Device name The device name is A: B:, or C: for drive A (left drive),
drive B (right drive), or drive C (fixed disk drive),
respectively.

Filename The filename comes directly after the device name, no
spaces are allowed between the filename and the device name
Filenames are 1 to 8 characters, and certain special
characters may be used (see DOS reference). The first
character must be a letter. Any DOS reserved words should
not be chosen for filenames.

The following filenames have special meaning to the
compiler and should not be used for your filename.

AUX LPT1
COM1 NUL
COM2 PRN
CON USER
LINE

File type The file type directly follows the filename and is preceded
with a period (.). If you don't use a file type, AML/Entry
assumes . AML, for editor files. If you want to view other
files, such as the files you created during a compile, you
must specify the correct file type because each file has
the same name as your application program. The files have
. LST and .SYIN file types.

If you have not changed the file type at any time, the
AML/Entry programs create the correct file type for you.

Certain commands, such as DEL, erase a file from a diskette so you are
required to specify a file type as a safety precaution.

When you specify a file to be edited, the editor reads in the program
file from the specified device (disk or diskette). A copy of the
program remains in the IBM Personal Computer memory while you are
editing. Any changes you make are made only to the copy in memory unless
you save the changes. The use of the SAVE command is described in
Chapter 3, "Using the AML/Entry Editor" during the editor exercises, and
in Chapter 7, "Operating the Manufacturing System."

2-18

Some Words about Diskettes

The first time you use a diskette, it must be formatted to get it ready
to receive information. Formatting erases any previously stored
information and checks the diskette for bad spots. It also builds a
directory to hold information about the files that will eventually be
written on it.

Backing up your programs by making copies of them is a good habit to get
into. This protects you if your original copies are misplaced or
damaged.

The diskette is coated with a magnetic substance and enclosed in a
permanent protective jacket. Information is written on or read from the
magnetic surface of the diskette. The computer can read the information
as often as needed or it can write new information on the diskette in
any unused space. The computer can also replace, or erase, old
information with new information by writing over the old information.

•
Getting Started on the IBM Personal Computer 2-19

How to Handle/Store Diskettes

Diskettes must be handled with care. Do not touch the exposed recording
surfaces. To make sure your diskettes do not get dirty or scratched,.
store them in their envelopes and storage boxes. It is also important
to keep the diskettes away from heat and magnetic field sources.

To keep the computer from writing over information already on the
diskette, you can cover the write-protect notch with a piece of tape.
This allows the computer to only read the information from the diskette.

Do's and Don'ts for Handling Diskettes

2-20 58X7338

LOADING THE AML/ENTRY SELF-BOOTING WORK DISKETTE

The following two procedures describe how to use your self-booting
AML/Entry work diskette or your self-booting AML/Entry system on a
fixed-disk drive. The first method describes a system with the power
switch in the OFF position. The second method describes your system
with the power switch ON. It is called System Reset.

Method 1 (Power Switch OFF)

Ignore the instructions pertaining to loading diskettes if your system
is already loaded on a fixed disk drive.

You: Open drive A (left drive).
You: Insert an AML/Entry system diskette into drive A (left drive).
You: Close the drive door.
You: Set the system unit on/off power switch to ()N.

System: Cursor appears on the screen in approximately four seconds.
After the self-test is completed, the system reads the
AML/Entry system files. (The in-use LED comes on).

System: Screen prompts you to enter a date when the in-use LED goes off

You: Enter in the date in the format shown on the screen.

System: Screen displays entered date.

You: Press the (enter) key.
You: Enter in the time in the format shown on the screen.

System: Screen displays entered time.

You: Press the (enter) key.

System: Menu is loading while the in-use LED is on.
When the in-use LED goes out, the menu is displayed on the
screen.

Note: If you installed the AML/E system onto a subdirectory of
the fixed disk, then the AUTOEXEC.BAT file will be unable to start
the menu. To bring up AML/E, it is necessary to use the chdir DOS
command, followed by menu.

Your IBM Personal Computer is ready for AML/Entry applications.

Chapter 2. Getting Started on the IBM Personal Computer 2-21

Method 2 (System RESET)

If your computer power is On and you want the AML/Entry work diskette
loaded, use the below outlined procedure.

Skip the next few instructions pertaining to loading diskettes if your
system is already loaded on a fixed disk drive.

You: Open drive A (left drive).
You: insert an AML/Entry system diskette into drive A (left drive).
You: Close drive A.
You: Simultaneously press the CTRL, ALT, and DEL keys.

System: Cursor appears on the screen and the date request prompt is
displayed after the in-use LED goes off.

The remaining procedure is the same as the previous power-up procedure.

2-22 58X7338

USING THE AML/ENTRY PROGRAMMING SYSTEM MENU

The AML/Entry programming system menu shown below allows you to select
one of the options necessary for branching into AML/Entry programs or to
return to DOS.

You: Enter the selected function number and press
the <---1 (enter) key to select any of the below
listed options.

AML/Entry Version 4.1 Programming System

7505-AAN (C) Copyright IBM Corporation 1983, 1984, 1985

Select a function:

O. Return to DOS.
1. Edit/Teach a program.
2. Compile a program.
3. Load a program to the controller.
4. Unload a controller program.
5. Set system configuration.
6. Set program name and options.
7. Communicate with controller.
8. Generate Cross Reference Listing.

Enter Option ===>

Chapter 2. Getting Started on the IBM Personal Computer 2-23

Option 0 (Return to DOS)

You may want to exit to DOS from the AML/Entry system. To return to
DOS, do the below outlined procedures.

You: Enter a 0 and press the <—i (enter) key
to return to the DOS environment.

System: Displays the DOS prompt.

If you use option 0 and want to return to AML/Entry, follow the below
outlined' procedure.

You: Enter menu and press the <—i (enter)
key to return to the programming system menu.

System: Displays the AML/Entry programming system menu.

2-24 58X7338

Option 1 (Edit/Teach a Program)

Teach mode can only be used from the editor. Accessing and using teach
mode is described in Chapter 6, "Using the AML/Entry Teach Mode." The
editor is described in Chapter 3, "Using the AML/Entry Editor."

WARNING

Files with the following file types should never
be edited with the AML/Entry editor or any
other editor:

.TXT

.ASC

.EXE

.COM
Unpredictable results occur if this is
attempted

To create or modify application programs and use the teach facilities,
do the below outlined procedures.

You: Enter a 1 and press the <---J (enter) key
to invoke the editor.

System: Editor screen displays the message outlined below.

ENTER FILESPEC --->

Here, the computer is requesting the name of the file to be read from a
diskette. See "Some Words About Files" on page 2-17 regarding names.
If you do not enter a filename, the computer assumes that you want to
create a new program. If you have previously created a file (program)
on the installed diskette, you can enter its name and the computer can
then display that program. The AML/Entry system prompts you if you
attempt to access a file that is not on that diskette.

Chapter 2. Getting Started on the IBM Personal Computer 2-25

Option 2 (Compile a Program)

To compile an AML/Entry program, do the below outlined procedures.

You: Enter a 2 and press the (enter) key
to invoke the compiler.

System: Prompts you to enter the filename that is
to be processed by the AML/Entry compiler program.
It must be an .AML type file.

If you elect not to process a file at this time you can exit the
compiler by pressing the (enter) key

Load File (.ASC)

The compiler checks the application program for certain errors and then
creates a special file to be loaded into the manipulator controller.
The file created by the compiler during the compile has the same name as
your application program with a . ASC file type.

Compiler Phase Messages

When the compiler is running, it displays three messages to indicate the
different phases of the compiler program. The messages, listed below,
are used only to show the progress of the compiler.

Reading Input File
Converting AML/E Program
Writing .ASC File.

Displayed Information

When an error is encountered, the compiler displays the line number and
text of the line that contains the error. An indicator is used to show
where the error was detected.

The compiler accepts input from files with line lengths of up to 255
characters. However, the screen displays only the first 80 characters
of any line. If the error is in a column off the screen, the error
display indicator moves to the right-most column position on the screen.

Compiler Errors

If you have any errors in your application program, the compiler reports
them during the Converting AML/Entry program. Errors terminate the
compiler execution and eliminate the creation of the .ASC file.

Note: If you modify your application program after it is
compiled, you must go through the compile process again to update
the .ASC file.

2-26 58X7338

Listing File (.LST)

The compiler can create a file that contains the program listing and any
error messages created during the compilation of your program. This
file has the same name as your application program, but the file type is
.LST . This file can be viewed or printed in the editor by specifying
the file name and then using the file type .LST. The AML/E editor only
handles 72 characters per line, and since the compiler prepends each
source file line with the machine address of the first instruction on
that line, lines may grow to longer than 72 characters. Thus on entry
to the editor, lines may be truncated to 72 characters. Another way to
view the file is to use the DOS type command and another way to print
the file is to use the DOS print command.

The listing file provides some very useful information on successfully
compiled programs. Along the left margin, the compiler includes the
starting address of the instructions on that line. This information
helps determine if more efficient code can be written. Because
AML/Entry supports Read records that report the address of the failing
instruction, you are able to check program listings to find the
AML/Entry statement that failed. This is especially useful when
determining the cause of a data error. The addresses from the listing
are also used when you set a debug address stop using the host
communications interface. Refer to the C "10" option of "COMAID" on
page 8-14.

Symbol File (.SYM)

The compiler can also create a file that contains information about
symbols and variables in your program. This file has the same name as
your application program, but the file type is .SYM . This file can be
viewed or printed in the editor by specifying the filename and using the
file type .SYM. The .SYM file is not intended to be used directly. The
XREF program (option 8) is used to produce readable information.

Note: If there is not enough space available on your diskette,
the compiler does not create a valid .ASC file. When you list the
directory of the diskette, an invalid file appears with a size of
0 following the filename and file type. Occasionally, the
compiler may indicate that the file compiled correctly, even
though there was insufficient space. Always check the amount of
available space on the diskette before compiling your program.

Chapter 2. Getting Started on the IBM Personal Computer 2-27

Option 3 (Load a Program to the Controller)

The below listed conditions must exist before you load a program to the
controller.

1. The controller must have power-on.

2. The control panel's Manip Power LED must be on.

3. The control panel's On Line LED must be on.

4. The communication cable between the IBM Personal Computer and the
controller must be attached.

5. A compiled copy (.ASC type) of your program must be on the diskette
or fixed disk.

You can select 1 of 5 partitions. If a program exists in the selected
partition, the controller erases that program before the load begins.

To load your application program into the controller, accomplish the
below outlined procedures.

You: Enter a 3 and press the (enter) key
to load your application program into the controller.

System: Prompts you to enter such information as the filename and
the destination partition in the controller.

2-28 58X7338

Option 4 (Unload a Controller Program)

1111
To unload a program from a partition and allow a larger program to be
transmitted, the below listed conditions must exist.

1. The controller must have power-on.

2. The control panel's Manip Power LED must be on.

3. The control panel's On Line LED must be on.

4. The communication cable between IBM Personal Computer and the
controller must be connected.

Note: Unloading a program does not return the compiled program
to the computer, but actually erases it from controller memory.

To unload controller programs from the partitions, accomplish the below
outlined procedures.

You: Enter a 4 and press the (enter) key
to clear partition(s).

System: Prompts you to enter the partition(s) to be cleared.

You: Select 1, 2, 3, 4, 5, or type "all" as the partition(s)
to unload.

System: Program unloader clears the specified storage partitions
at the controller.

Chapter 2. Getting Started on the IBM Personal Computer 2-29

Option 5 (Set System Configuration)

The configuration utility is a menu-driven program. Prompts are
available to aid you to access, exit, or update your AML/Entry program
diskettes. If you change the configuration on your self-booting diskette
from the configuration that was shipped, you must change each new
diskette you create from the master diskette. The configuration
information is used by all AML/Entry options.

Note: Make sure that your diskettes are not write-protected
before using this utility. If the diskettes are write-protected,
an error will occur.

The below listed selections determine your AML/Entry system
configuration.

• Which robot model you are using.

• If you want to use inches or millimeters when defining points in the
work space.

• Which communication port is selected for communications to the
controller.

To execute the system configuration utility, accomplish the below
outlined procedure.

You: Enter a 5 and press the
<—a

 (enter) key
to gain access to the configuration utility menu.

System: Screen displays configuration utility menu. The following
screen is a sample; the one you receive will vary based on the
configuration of your system.

AML/Entry Version 4.1 Configuration Utility

1. Exit utility, updating the configuration as current
selections.

2. Quit utility, making no changes to configuration.
3. Specify Robot Type. {Currently 7545)
4. Specify Units. {Currently MM)
5. Specify Communications Port. {Currently COM1:}

Enter Option ===>

2-30 58X7338

When using your AML/Entry program configuration, do not mix inches an
millimeters in an application program. This causes errors in th
controller or yields unpredictable results.

Note: Home position is a special reference point given in
millimeters only. Requesting a move to Home position in inches
may result in locating a point other than the precise home. If
Home position is used in a program, it is recommended that the
program operate in millimeters.

Check the editor/teach prompts as you enter the filename to determine
the editor is configured for the right model of manipulator.
incorrect configuration does not allow you to communicate with th
controller in the teach mode.

Note: Do not reconfigure the communication port option unless
you have a second asynchronous communication card.

Chapter 2. Getting Started on the IBM Personal Computer 2-3

Option 6 (Set Name and Options)

To specify a default filename, compiler options, and a partition number,
do the below outlined procedure.

Note: If a default is specified, it automatically applies to
each of the menu options. If a file extension is not specified in
the filename, it defaults to the function being used. The Editor
and Compiler use .AML, Load uses .ASC, and Xref uses .SYM.

You: Enter a 6 and press the <--- 1 (enter) key
to gain access to the Programming System Options menu.

System: Screen displays the Programming System Options menu.

AML/Entry Programming System Options

Filename: testl
Compiler Options: /s/h
Partition Number: 3

Select a function:

0. Return to DOS.
1. Edit/Teach a program.
2. Compile a program.
3. Load a program to the controller.
4. Unload a controller program.
5. Set system configuration.
6. Set program name and options.
7. Communicate with controller.
8. Generate Cross Reference Listing.

Enter Option ===>6

You are able to enter the default filename, compiler options, and
partition number on this screen. This data is used by all the other
options (except 0), until it is changed by using option 6 to enter new
default data. This returns the cursor to 'Filename:' and allows you to
enter new default data. You must press (enter) after each default
has been entered. After 'Partition Number:' is entered, you are able to
select options 0 through 8. The programming system options menu
replaces the programming system menu until you select option 0 and
return to DOS.

Note: The cursor keys should not be used when entering data into
the filename, compiler options, or partition number field. The
system simply overlays the new information on top of the old
information. The space bar should be used to erase an entry
within a field.

2-32 58X7338

Option 7 (Communicate with controller)

The below listed conditions must exist before you communicate with the
controller.

1. The controller must have power-on.

2. The control panel's On Line LED must be on.

3. The communication cable between the IBM Personal Computer and the
controller must be attached.

The program that communicates with the controller is named COMAID. To
execute COMAID, follow the below outlined procedure.

You: Enter a 7 and press the
<—a

 (enter) key
to gain access to the COMAID program.

System: First greets you with an information screen, followed by the
COMAID main menu (see chapter 8).

You: Enter communication requests, giving additional information
according to system prompts.

You: Eventually select option "e", which will return control to
the AML/Entry Menu.

Chapter 2. Getting Started on the IBM Personal Computer 2-33

Option 8 (Generate Cross Reference Listing)

A cross reference listing is a list of all the AML/E variables that
consume space in controller memory. The list contains such information
as the name of the AML/E variable, its type point, pallet,
counter, etc.), its starting variable number, its size, etc. The cross
reference listing is generated by a program named XREF.

XREF Program

The XREF.EXE program may be invoked by selecting option 8 from the AML/E
menu. It produces a formatted listing of the variable names along with
the associated controller variable numbers. When reading or writing
variables from or to the controller, you must reference the variables by
their numbers produced by the XREF program. See "XREF Program" on
page 4-89 for a discussion of the listing produced by XREF.

Note: To use the XREF program you must have generated a .SYM
file when you compiled your program.

After the compiler finishes, and control is returned to the AML/E menu,
select option 8. The XREF program will begin execution, and will prompt
you for the filename. You do not have to include the file extension
(.SYM), because the XREF program uses this as the default.

To print the output of the XREF program on the system printer, strike
the Ctrl and PrtSc keys simultaneously before selecting option 8. The
XREF program will then be started, and all lines that are printed on the
screen will also be printed on the printer. When the program
terminates, strike the Ctrl and PrtSc keys simultaneously to disable the
printing to the printer.

It is also possible to redirect the output of the XREF program to a file
using the redirection feature of DOS. See your DOS manual for a
description of redirecting the output of a program. To do this requires
you to first leave the AML/E menu. After returning to DOS, then a
variety of DOS command lines can be used to invoke XREF and route the
output to different places. Consider some of the following DOS command
lines.

2-34 58X7338

• DOS Command Entered Action

XREF Starts the XREF program. Will prompt for the
file to be used.

XREF TEST Runs the XREF program on the file TEST.SYM.

XREF TEST >TEST.XRF

XREF TEST >PRN

Runs the XREF program on the file TEST.SYM.
The output is placed in the file TEST.XRF
instead of on the screen (see DOS reference).
Same as above except the output is printed on
the printer (see DOS reference).

Because XREF expects a key to be struck at the
user must remember to do this. If redirection
any key to continue" message will not appear
redirected to the file or device specified on
is best to use the enter key (<—I), because
found, then XREF is awaiting a new file name.
to end.

•

end of its execution, th -

is being used the "Strik
on screen, and will ti -

the DOS command line. It
if the file could not b
An enter will cause XRE

Chapter 2. Getting Started on the IBM Personal Computer 2-3

DOS BATCH SUPPORT

IP AML/Entry, you are allowed to compile and load AML/Entry programs
using DOS batch programs.

Note: If you have a color screen, the MODE (DOS command) must be
set to 80 before running the compiler.

Invoking the Compiler

The compiler is invoked from DOS with an optional command string that
specifies filename and option, as listed below. It recognizes both
lower and upper case characters.

/L - produces a listing file (.LST) on the diskette or fixed disk

/H - produces a hard copy error report

• /S - produces a symbol file (.SYM) on the diskette or fixed disk

• /E - aborts compile after five errors are encountered

• /B - batch mode operation (does not require user input),
compiler does not display "press any key..." message

Options must be entered only after the filename is specified. An
example using the above options is outlined below.

A> compiler task/L/S/B

This invokes the compiler to compile the file TASK.AML and to create
both a listing and a symbol file without user input. If the file is not
on the default drive, the name of the device that contains the file must
be included in the file specification.

ERROR LEVEL: A DOS error level is returned by the compiler. It is
accessed in .BAT files by the DOS batch ERRORLEVEL command. If no
errors are encountered, the compiler returns a 0 (zero). If an error is
encountered, the compiler returns a 4 (four). If a serious compiler
error is encountered, (i.e. "drive not ready"), the compiler returns a
10 (ten).

Loading/Unloading a Program to the Controller

Loading (or unloading) a compiled program is done by invoking COMAID.
COMAID accepts parameters passed on the DOS command line. The
parameters following the COMAID command are optional. Optional
parameters must be entered sequentially. Once an optional parameter is
omitted, the remaining parameters can not be specified. If any
parameters are omitted, you are prompted for the information. Loading a
program only accepts an .ASC extension. If any other extension is used,
COMAID returns an error. If an extension is not specified in the
filespec, .ASC is assumed.

2-36 58X7338

To load a partition:

You: Enter this command:
COMAID L [filespec] [partition]

For example,

A> COMAID L MAIN 2

will load the compiled program MAIN.ASC to partition 2.

To unload a partition:

you: Enter this command:
COMAID U [partition]

Example Batch Program

An example batch program is outlined below. This batch file compiles
the PALLET.AML file, and generates a listing (.LST) and a symbol table
(.SYM) file. If errors are detected, an error message is printed. If
no errors are detected, then the compiled program is downloaded to
partition 3.

PAUSE INSERT PROGRAM DISKETTE INTO DRIVE A
COMPILER A:PALLET/L/S/B
REM THIS COMPILES AND GENERATES A LISTING FILE AND A SYMBOL FILE
IF ERRORLEVEL 4 GOTO LAB1
REM ERRORLEVEL NUMBER WAS 0
GOTO LAB2
:LAB1
REM THERE WAS AN ERROR
ECHO ERRORS DETECTED
GOTO END
:LAB2
ECHO SUCCESSFUL COMPILATION -- NOW DOWNLOADING
COMAID L A:PALLET 3
:END

Chapter 2. Getting Started on the IBM Personal Computer 2-37

AML/ENTRY UTILITY PROGRAMS

AML/Entry diskettes contain the below listed utility programs to check
the operation of the controller.

75XXexX.AML files for exercising the manufacturing system with a
7545 or 7547 manipulator attached

• 800S-exX.AML files for exercising the manufacturing system with a
7545-800S manipulator attached

An OFFSET.EXE program used to make corrections to any servoed axis.
Refer to the IBM Manufacturing System Maintenance Information
Manual, of your system for usage of this program.

The AMLECOMM modules which are used to create a working copy of
AMLECOMM. The following files comprise the AMLECOMM system:
AMLECOM*.BAS, COMPILE.BAT, BCVTFLT.COM , BFLTCVT.COM , CCVTFLT.OBJ,
CFLTCVT.OBJ, MSGCOM.TXT, CONFIG.BAS, and MENUCOMM.BAS.

If you require one of the exerciser programs, you must do the below
outlined procedure.

You: Compile the program.

You: Load the program in a controller partition.

The OFFSET.EXE program is started by entering the name while in the DOS
environment and pressing the enter key. The program provides prompts
for you to follow.

A description of the AMLECOMM system is in Chapter 8, "Communications."

2-38 58X7338

CHAPTER 3. USING THE AML/ENTRY EDITOR

This chapter contains exercises for manipulating text, using the
features of the editor. A reference of Editor and AML/Entry commands is
provided in Appendix A.

The maximum file size for the Editor is 500 lines for personal computers
with 192-K of memory and 800 lines for those with 256-K.

When using the editor, the function keys on the keyboard have special
meaning. These keys are described before the description of the editor
commands.

Function Typewriter keyboard Numeric
keys keypad

FULL SCREEN EDITING

Any line on the display screen can be changed or added to by positioning
the cursor where you want to make the change and then making that
change. The AML/Entry editor is a full-screen editor.

With a full screen editor, changes can be made anywhere in the 20-line
window by moving the cursor around and entering in the characters. The
editor does not really see the changes until the <-1 (enter) key, a
function key, or one of the scrolling keys (PgUp, PgDn) is pressed. If
you make some changes and then change your mind, press function key F2
(reshow) and the screen returns to the state displayed when you last
pressed the enter key. Once the <-1 (enter) key is pressed, the editor
makes the changes to its copy of the program.

Chapter 3. Using the AML/Entry Edi

The copy of the program that the editor changes is the storage (memory)
copy. It is not a permanent storage area. If the power fails, the copy
in this storage area is lost. In this chapter, there is an exercise
that saves the storage copy on a diskette. To prevent its loss by any
type of interrupt, such as a power failure, the storage copy should be
saved periodically on a diskette.

Features of the editor shown below are described in the following
paragraphs.

File Specification Line

This is the top line viewed on the screen. It contains the device name
(if specified), the file name, the file type, and the date. New programs
do not have a file name or file type.

Primary Commands

These commands are entered on the command input line. Primary commands
manipulate text and manage disk operations.

3-2 58X7338

Date

The date you enter, when booting the system, is displayed at the top of
the screen.

Note: In the example screens used in this chapter, a date of
7/08/85 is used.

Message Display

Both error messages and successful execution messages are displayed in
the upper right-hand corner of the editor display area.

Top of File/Bottom of File

Top of File and Bottom of File are used to designate the beginning and
ending of the file. All data is inserted between these two lines.

Line Commands

These commands are entered to the left of the line numbers on the
screen, starting in the first position. Line commands insert a blank
line(s), delete a line(s), copy a line(s), or move a line(s). You can
not use the Ins (insert) key in this area of the screen.

Line Numbers

The line numbers run vertically down the screen and are assigned by the
editor as you insert, delete, copy, or move lines. The editor numbers
all the lines of the program sequentially. The numbers can not be
changed, but you can rearrange the lines of the program.

Function Key Settings

The bottom line of the screen displays the settings of the function
keys. Function keys allow frequently used commands to be executed by
pressing a single key.

20-Line Program Window

Twenty lines of the program can be viewed or prepared without moving the
window. Moving the window is sometimes referred to as scrolling.

Chapter 3. Using the AML/Entry Editor 3-3

Line
commands

KEYBOARD USAGE FOR THE EDITOR

Function Key Settings

Function key settings as shown on the bottom of the screen have numbers
that correspond to the numbers on the function keypad of the keyboard.
These functions are available only when you are using the editor and are
displayed only when available for use. The various uses of the function
keys are listed below.

Message display

.........................	i--
COMMAND..

> Tp.P.■ipFtt.I.I.A.:<.:Irrl!:*,44*titleP:11**111*iffrPltittfrP.dn't

• • • •••••••••::::::::;:;;:;•%"":*:*:::

_->INPtT -
qdr,wcsA#-.

' •otiNr1:
—....••••:•:••••:•:•......•/...:•:•:•.;•:!:•.

eitert...----.:i#0.11...e%.
....,

:....,.:..-...•........:......-:-.-.x.......%• _.... • . ..,.....•......•...•......•......., ..„.....„..•
'iS.:':':. k:

....:.••••:•:•:•::•:::•::::::•::::•:•::::::.:::-.:.:-:....;::::;:::::.;.;•:•.:......
;,••:•:•:::::

.*•:•:;::•::::::•::::::•::::::::::::::;::::::::::::::;;;;::.;:.:.:.:.;:::::;.::::.-...

..............

.".::::*:-:

• • ''''':':*:::::::•:•:•:•...::::.:.:::.:::.:.:.::.::;::.::.::.:::::::::::::::::::::::::.:::::::::::::::::::::::.:.::

::::•:•:•. •
%:•:•:::•::

•:•:-...:•:.
••:•:-......:

*:•::•:•:•:•.
::::.:.:•::::
••:•::::::.:.
•:;:::•:•:::::

is

Help Screens

If you want information about any of the commands while you are working
in the editor, press the Fl key. The help screen contains several pages
of information about commands and keys for the editor. Prompts are
provided to help you page through the screens and return to the editor.

File
specification Primary
line commands

Clete

03-13-1983

Key Screen Description
Display

Fl 1HELP Displays the editor commands.

F2 2RESHOW Clears the screen of changes that have not
been entered.

F3 3RESET Clears pending line commands.

F4 4+FIND Searches for the occurrence of a character
string defined by a previous FIND command.

F5 5+CHANGE Searches for and changes the next occurrence
of a character string that was previously
defined by a CHANGE command.

Note: See CAUTION, WARNING, and DANGER notices in chapter 6
before using TEACH.

F6 6TEACH Invokes teach mode to control movement of the
manipulator by the Personal Computer.

F7 7RECALL Recalls the last point from teach mode to be
used in an application program.

F8 8EXIT Exits the editing session and saves the file.

F9 9TOP Moves the window to the beginning of the file.

F10 10BOTTOM Moves the window to the end of the file.

Chapter 3. Using the AML/Entry Editor 3-5

Special Keys

When in the editor, you may be using some of the keys described below.

SPECIAL KEY DESCRIPTION

The enter key moves the cursor down one line to the
first position on the next line. Pressing the enter key
causes the editor to update changed fields or
characters. Primary and line commands are executed when
the enter key is pressed.

The tab key moves the cursor six character spaces
right. If the shift key is held down while you press
the tab key, the cursor moves six characters to the
left.

The shift key changes characters entered from the
keyboard to the uppercase characters shown on the keys.
Alphabetical characters are automatically in uppercase
in the editor.

Pressing the control key simultaneously with another
key provides special meaning to that key. For example,
to scroll to the beginning of the program, press the
CTRL and PgUp keys at the same time.

The backspace key moves the cursor one position to the
left and deletes the character at that position.

Pressing the shift key and the PrtSc key
simultaneously causes the contents of the screen to be
printed on the optional printer.

Typing this character and pressing enter on the editor
primary line causes the previous primary command to be
displayed.

1
End

Numeric Keypad

The following descriptions are for keys on the numeric keypad:

KEY DESCRIPTION

The Ins key puts you into insert mode, allowing
characters to be inserted before the cursor position.
Characters to the right of the cursor are shifted to the
right one position for each character entered. To exit the
insert mode, press the Ins key again or press the enter
key.

The End key advances the display window to the last line
of the program if the program is longer than 20 lines.

The Home key moves the cursor to the command input line.

The Num Lock key is a shift key for the numeric keypad
only. The key works like a toggle switch; you must press
the key a second time to return the numeric keypad to
lowercase characters. In AML/Entry, this key should not be
used to create uppercase numeric keypad characters. In
teach mode, the key is ignored by the AML/Entry programs
for safety reasons.

The Del key deletes a character at the cursor position,
and characters to the right of the cursor are shifted left
one position.

PgUp The Page Up key scrolls the window up a half page.

The Page Down key scrolls the window down a half page.

Chapter 3. Using the AML/Entry Editor 3-7

The cursor positioning keys move the cursor in the direction shown by
the arrow on the key.

Control Keys

The control key provides special meaning to other keys when used
simultaneously with those keys. The following are Ctrl key applications
when using the editor:

KEY DESCRIPTION

Ctrl - PgUp Scrolls the display to the beginning of the program (same
as F9).

Ctrl - End Deletes all text characters from the cursor position to
the end of the line.

Ctrl - Moves the cursor to the first position of the program
window on the next line. The screen does not blank and
refresh when you use these keys, and commands are not
processed.

SETUP FOR EDITOR EXERCISES

Your computer does not have to be connected to the controller during any
of these exercises. Refer to Chapter 2, "Getting Started on the IBM
Personal Computer" for the power-up instructions for the Personal
Computer.

GETTING TO THE EDITOR FROM THE MAIN MENU

With the main menu displayed, perform the following steps to use the
editor when you do not have a previously-named file to edit.

You: Enter: 1.
You: Press the <--1 (enter) key.

System: Screen prompts for filename as outlined below.

ENTER FILESPEC --->:

You: Press the <--- 1 (enter) key.

System: Screen displays the new file as outlined below.

07-08-1985
COMMAND INPUT --->
 - - ***********************> T013•0F•FILE <**************************
 - ***********************> BOTT01.1•0F•FILE <***********************

1HELP 2RESHOW 3RESET 4+FIND 5+CHANGE 6TEACH 7RECALL 8EXIT 9TOP 10BOTTOM

The next instruction moves the cursor down to the line-command area of
the editor.

You: Press the (enter) key.

System: Cursor moves to the TOP•OP•FILE line.•
Chapter 3. Using the AML/Entry Editor 3-9

EXITING THE EDITOR

Most of the exercises in this chapter use an edit screen developed in a
previous exercise of the chapter. To avoid starting over each time, you
can name the program when you exit the editor, using the instructions
from this section. The exercises at the end of the chapter provide more
information on saving and deleting files.

Use these instructions to name the program when you exit the editor the
first time. Once the program is named, you can exit the editor using a
single step.

Exiting the Editor for the First Time

Perform the following steps the first time you exit the editor exercises
in this chapter.

You: Press function key F8

System: Screen prompts for filename as outlined below.

ENTER FILESPEC --->:

You: Name the file by entering: practice
You: Press the <----I (enter) key.

System: The file is saved on the diskette under the name
PRACTICE.AML. The screen refreshes and displays the
main menu.

Recalling the Practice Program

If you used the procedure in "Exiting the Editor the First Time", return
to the program by performing the below outlined steps.

You: Enter 1 with the main menu displayed on the screen.
You: Press the <--- 1 (enter) key.

System: Screen prompts for filename as outlined below.

ENTER FILESPEC --->:

You: Enter the device name (b: if drive B), and then enter practice
You: Press the (enter) key.

System: In-use LED comes on and the screen blanks. After the in-use
LED goes out, the program appears on the screen.

3-10 58X7338

Line Command Description

A
B
C
CC
D
DD
I

MM
R

Copies/moves after this line
Copies/moves before this line
Copies this line
Copies this block of lines
Deletes this line
Deletes this block of lines
Inserts a line or a number (1-9) of lines
Moves this line
Moves this block of lines
Repeats a line a number (1-9) of times

Exiting the Practice Program After You Name It

Once you name the file, you can exit the editor by pressing function key
F8 once. The screen displays the main menu after the editor has written
the program on the diskette.

I NFORMATION ABOUT LINE COMMANDS

There are 10 line commands available for your use in the edit mode.
Line commands are typed in the area to the left of the program line
numbers. Line commands are not processed until you press the enter key.

Commands not started in the first character position are ignored. The
COMMAND PENDING message appears if parts of a command are still required
to complete the processing. The message appears when commands that are
used in pairs are not all entered prior to processing. This may occur
if you enter part of the paired command on a line of the present screen
and then press a paging key to display another screen so that the next
command can be entered. The COMMAND PENDING message is not an error
message.

You can clear commands and pending commands before processing by
pressing the F3 key.

Chapter 3. Using the AML/Entry Editor 3-11

Line Command Conflicts

In general, it is not a good idea to use too many line commands on the
same screen; it's easy to get confused.

If you have entered multiple line commands on the screen and the editor
is not sure what you mean, the message "line command conflict" is
displayed. When this occurs, the editor does not execute any of the line
commands you entered at that time.

Line Commands that Cross Screens

Sometimes it is necessary to use line commands that cross screens. That
is, the screen is scrolled between the first and second commands that
are used in pairs. For example, you may want to move some lines of text
from the front to the back of a 100 line program. You use the MM
command on the lines of text on the first screen displayed and you then
press the F10 key to go to the end of the program. When the screen
displays the end of the program, the message "COMMAND PENDING " flashes
in the right top corner of the screen reminding you that a command is
needed to complete processing. You type the A command at the desired
line of the program and then press the enter key. The text involved in
the move is transferred to the location following the A command. The
"COMMAND PENDING" message on the screen is cleared.

At any time until you press the enter key you can change your mind about
the execution of the command(s) and press the function key F3 . This
clears any commands that are pending or any commands displayed on the
screen.

3-12 58X7338

Using the Line command I (Insert)

Use the I (insert) line command to provide additional programming lines
to the editor. Follow the next instructions for inserting programming
lines.

You: Press the enter () key:

System: Cursor moves to the "TOP•OPTILE" line.

You: Enter: I

System: The screen displays I on the "TOP•OF•FILE" line.

07-08-1985
COMMAND INPUT --->

*********************> Top•u•FILE <**************************
 - - *********************> BOTTOM•OF•FILE <***********************

You: Press the enter () key:

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•u•FILE <************************

1
***********************> BoTTom.u.FILE <*********************

Chapter 3. Using the AML/Entry Editor 3-13

The insert command (I) can be followed by a digit (1 to 9) that
instructs the editor to insert that many lines after the line on which
you typed the I.

You: Move the cursor to the left of the line numbers by using
the shift and tab keys simultaneously.

You: Enter: 19

System: Displays the screen:

07-08-1985
COMMAND INPUT -7->
 - ***********************> Top•oF•FILE <*************************
19 1

***********************> BOTTom•u•FILE <**********************

You: Press the enter () key:

System: Cursor moves to the right of the number 2 and the
screen displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•0F•FILE <************************

1
2
3
4
5
6
7
8
9

1 0
***********************> BOTTom•0F•FILE <*********************

3-14 58X7338

Using the Line Commands D and DD (Delete)

The D and DD line commands are delete commands. In the following
example, your cursor should be positioned to the right of the number 2.
The screen for this exercise displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> Tu•u•FILE <************************

1
2
3
4
5
6
7
8
9

10
***********************> BOTTom•u•FILE <*********************

You: Move the cursor to the left of line number 2, using the shift
and tab key simultaneously. The next instruction deletes a
single line of text.

You: Enter: D

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - ***********************> To•w•FILE <************************

1
D 2

3
4
5
6
7
8
9

10
***********************> Bomm•u•FILE <*********************

Chapter 3. Using the AML/Entry Editor 3-15

You: Press the enter () key:

System: Screen now contains lines numbered 1 through 9 (line 2 was
deleted and the rest of the lines renumbered) with the cursor
positioned on line number 2. The screen displays:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•u•FILE <************************

1
2
3
4
5
6
7
8
9
***********************> Barrom•u•FILE <********************

The next command is used in pairs to delete blocks of text.

You: Enter: co
You: Use the cursor keys to move the cursor to line number 6,

first character position.
You: Enter: DD

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•u•FILE <************************

1
DD 2

3
4
5

DD 6
7
8
9
***********************> BOTTom•u•FILE <*********************

3-16 58X7338

You: Press the enter () key:

System: Screen appears with lines 1 through 4. The cursor is
positioned to the left of the line number 2.

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•u•TILE <************************

1
2
3
4
***********************> BOTT01.1.0F•FILE <*********************

Chapter 3. Using the AML/Entry Editor 3-17

Using the Line Commands M, MM, with A or . B (Move with After or Before)

The M and MM line commands are move commands. The A line command
stands for "after" and B line command stands for "before". You are
moving text in this exercise.

The cursor is located to the left of the line number 2. Your screen
starts with the display:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•oF•FILE <************************

1
2
3
4
 ***********************> BOTT011•0F•FILE <*********************

You: Use the cursor keys to move up to the first position on the
TOP•OF•FILE line.

You: Press the control and enter (Ctrl - <-1) keys.

System: The cursor moves to line 1 and is located on the program
window side of the number. Note the blank space between the
number and the cursor. This blank space is required.

You: Enter: PICK AND PLACE ROBOT
You: Press: Ctrl-
You: Enter: EASY TO PROGRAM
You: Press: Ctrl-
You: Enter: THE IBM MANUFACTURING SYSTEM
You: Press: Ctrl- <-1

You: Enter: IS VERSATILE

3-18 58X7338

Your screen should look like this:

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•0F•FILE <************************

1 PICK AND PLACE ROBOT
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 IS VERSATILE

 - ***********************> BOTT011•0F•FILE <*********************

The next command moves single lines of text.

You: Use the cursor positioning keys to move the cursor to the
line command area of the screen. Position the cursor at
line 3.

You: Enter: M

The next command identifies the line that the text is to follow.

You: Use the cursor positioning keys to move the cursor to the
line-command area of the TOP•OP•FILE line.

You: Enter: A

System: Displays the screen:

07-08-1985
COMMAND INPUT --->

***********************> Top•u•FILE <************************
1 PICK AND PLACE ROBOT
2 EASY TO PROGRAM

M 3 THE IBM MANUFACTURING SYSTEM
4 IS VERSATILE

 - ***********************> BOTTOIT•F•FILE <*********************

Chapter 3. Using the AML/Entry Editor 3-19

You: Press the enter () key:

System: Screen refreshes with line 3 moved to line 1. The cursor
is positioned on line 1. The line numbers of the screen are
in numeric order.

The next command is used in pairs to move blocks of text.

You: Enter: MM
You: Use the cursor positioning keys to move the cursor to the

line-command area of line 2.
You: Enter: MM
You: Use the cursor positioning keys to move the cursor to

the line-command area of line 3.
You: Enter: A

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - ***********************> Tu•oF•FILE <*******:or*:c************
MM 1 THE IBM MANUFACTURING SYSTEM
MM 2 PICK AND PLACE ROBOT
A 3 EASY TO PROGRAM

4 IS VERSATILE
 - ***********************> BoTTom•u•FILE <********************

You: Press the enter (<—J) key:

System: Screen refreshes with the contents of lines 1 and 2 moved
after line 3. The line numbers are in numeric order and the
cursor is located on line 4.

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•o•TILE <***********************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE

 - ***********************> BOTTom•u•FILE <********************

3-20 58X7338

The only difference between line command B and line command A is with
line command B the text is moved before the line that is marked. Line
command B can be used with M and MM.

The next instructions" move one line before another.

You: Enter: M on line number 4.
You: Use the cursor positioning keys to move the cursor to the

line-command area of line 3.
You: Enter: B

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•o•TILE <***********************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM

B 3 PICK AND PLACE ROBOT
M 4 IS VERSATILE
 - - *************AU*******> BOTTom•u•FILE <********************

You: Press the enter (<--- 1) key:

System: Screen refreshes with line 4 copied on line 3. The
cursor is positioned on line number 4. The line numbers of the
screen are in numeric order.

07-08-1985
COMMAND INPUT --->

***********************> TOP•OP•FILE <***********************
1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 IS VERSATILE
4 PICK AND PLACE ROBOT

 - - ***********************> BOTT014•01.•FILE <********************

Repeat the last instructions for using line commands M and B to return
lines to their previous positions.

Chapter 3. Using the AML/Entry Editor 3-21

Using Line Commands C, CC, with A or B (Copy with After or Before)

The C and CC line commands are copy commands. The A line command
stands for "after " and the B line command stands for "before". In
this exercise, you are copying text.

The cursor is located on line 4 at the start of the exercise. Your
screen displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> Tu•u•FILE <************************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE

 - **********************> BoTTom•N•FILE <*********************

The next command copies single lines of text.

You: Use the cursor positioning keys to move the cursor to the line
command area of line 1.

You: Enter: C

The next command identifies the line the text is to follow.

You: Use the cursor positioning keys to move the cursor to the
line-command area of line 4.

You: Enter: A

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•u•FILE <************************
C 1 EASY TO PROGRAM

2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT

A 4 IS VERSATILE
 - ***********************> BOTTom•u•FILE <********************

•
3-22 58X7338

1111 You: Press the enter (<) key:

System: Screen refreshes with line 1 copied on line 5.
The cursor is positioned on line number 5. The line numbers of
the screen are in numeric order. There are 5 lines on the screen.

The next command is used in pairs to copy blocks of text.

You: Move the cursor to the line command area of line 2.
You: Enter: CC
You: Use the cursor positioning keys to move the cursor to the

line-command area of line 4.
You: Enter: CC
You: Use the cursor positioning keys to move the cursor to the

line-command area of line 5.
You: Enter: A

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•o•TILE <************************

1 EASY TO PROGRAM
CC 2 THE IBM MANUFACTURING SYSTEM

3 PICK AND PLACE ROBOT
CC 4 IS VERSATILE
A 5 EASY TO PROGRAM
 - - ***********************> BOTTom•u•FILE <*********************

You: Press the enter () key:

Chapter 3. Using the AML/Entry Editor 3-23

System: Screen refreshes with the contents of lines 2 through 4
copied following line 5. The screen displays eight lines
that are in numeric order. The cursor is positioned to
the left of line number 6.

07-08-1985
COMMAND INPUT --->
 - *********************> Top•w•FILE <************************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE
5 EASY TO PROGRAM
6 THE IBM MANUFACTURING SYSTEM
7 PICK AND PLACE ROBOT
8 IS VERSATILE

 - ***********************> BorroppopITILE <*********************

The line command B is used with the line command C the same way it was
used with the line command M. The following instructions show you how
to copy one line before another.

You: Enter: C on line number 6.
You: Move the cursor to line number 8 and enter: B.

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - ***********************> TOP•O•TILE <************************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE
5 EASY TO PROGRAM

C 6 THE IBM MANUFACTURING SYSTEM
7 PICK AND PLACE ROBOT

B 8 IS VERSATILE
 - ***********************> BOTTom•u•FILE <*********************

You: Press the enter () key: •
3-24 58X7338

System: Screen refreshes with 9 lines. Line number 6 is copied
before line number 9. The numbers will be in numeric order
with the cursor on line number 9.
The screen displays:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•u•FILE <************************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE
5 EASY TO PROGRAM
6 THE IBM MANUFACTURING SYSTEM
7 PICK AND PLACE ROBOT
8 THE IBM MANUFACTURING SYSTEM
9 IS VERSATILE

 - - ***********************> BOTTom•0F•FILE <*********************

To return the line numbers to their previous positions, delete line
number 8.

You: Move the cursor to line number 8 and enter: D .
You: Press the enter () key:

System: Screen refreshes with 8 lines and the cursor is on
line number 8.

•
Chapter 3. Using the AML/Entry Editor 3-25

Using the Line Command R (Repeat)

The R line command repeats a line(s). You are repeating text in this
exercise.

The cursor is located on line 8. Your screen displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> ToppopTILE <************************

1 EASY TO PROGRAM
2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE
5 EASY TO PROGRAM
6 THE IBM MANUFACTURING SYSTEM
7 PICK AND PLACE ROBOT
8 IS VERSATILE

 - ***********************> Burrom•u•FILE <*********************

The next instruction repeats a single line.

You: Use the cursor positioning keys to move your cursor to the
line-command area of line 1.

You: Enter: R

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•o•TILE <************************
R 1 EASY TO PROGRAM

2 THE IBM MANUFACTURING SYSTEM
3 PICK AND PLACE ROBOT
4 IS VERSATILE
5 EASY TO PROGRAM
6 THE IBM MANUFACTURING SYSTEM
7 PICK AND PLACE ROBOT
8 IS VERSATILE

 - ***********************> BoTTom•u•FILE <*********************

•
3-26 58X7338

You: Press the enter () key:

System: The screen blanks and then refreshes with line 1 repeated
on line 2. All other lines move down one line number.
The screen displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> TOPeOF•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTOM•OF•FILE <*********************

The R command can be followed with a single digit which instructs the
editor to repeat the line that many times.

You: Enter: R9

System: Displays the screen:

07-05-1985
COMMAND INPUT --->

***********************> Top•OF.FILE <************************
EASY TO PROGRAM

R9 2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTOMoOPTILE *********************

Chapter 3. Using the AML/Entry Editor 3-27

You: Press the enter (<--J) key:

System: Screen blanks and then refreshes with line 2 repeated 9 times.

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•oF•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 EASY TO PROGRAM
4 EASY TO PROGRAM
5 EASY TO PROGRAM
6 EASY TO PROGRAM
7 EASY TO PROGRAM
8 EASY TO PROGRAM
9 EASY TO PROGRAM
10 EASY TO PROGRAM
11 EASY TO PROGRAM
12 THE IBM MANUFACTURING SYSTEM
13 PICK AND PLACE ROBOT
14 IS VERSATILE
15 EASY TO PROGRAM
16 THE IBM MANUFACTURING SYSTEM
17 PICK AND PLACE ROBOT
18 IS VERSATILE

 - ***********************> BOTTOM•O•FILE <********************

The next instructions delete a few lines of the text so the exercise is
easier to follow.

You: Enter DD on line 3.
You: Move the cursor to line number 11 and type a block

delete command: DD

40

3-28 58X7338

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•oF•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM

DD 3 EASY TO PROGRAM
4 EASY TO PROGRAM
5 EASY TO PROGRAM
6 EASY TO PROGRAM
7 EASY TO PROGRAM
8 EASY TO PROGRAM
9 EASY TO PROGRAM
10 EASY TO PROGRAM

DD 11 EASY TO PROGRAM
12 THE IBM MANUFACTURING SYSTEM
13 PICK AND PLACE ROBOT
14 IS VERSATILE
15 EASY TO PROGRAM
16 THE IBM MANUFACTURING SYSTEM
17 PICK AND PLACE ROBOT
18 IS VERSATILE

 - -***********************> Barrom•u•FILE <*********************

You: Press the enter () key:

System: Displays the screen:

07-08-1985
COMMAND INPUT --->
 - - ***********************> Top•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> myrnm•op•TILE <********************

Chapter 3. Using the AML/Entry Editor 3-29

INFORMATION ABOUT PRIMARY COMMANDS

All primary commands are entered on the editor screen following
COMMAND INPUT --->, as shown in the figure at the beginning of this
chapter. Primary commands provide two types of functions: text
manipulation and disk management.

The two functions have commands that do the following:

• Text manipulation

— Find occurrences of characters

— Change occurrences of characters

— Position a particular line number on the top line of the editor

• Disk management

— Save the current editor file without ending the session

- List file names from a diskette or fixed disk

— Recall last primary command executed

— Rename a specified file

Get and insert a file into a specified file

— Extract parts of text and place into a specified file

— Print a specified file

Delete a specified file

End the editing session without saving the file by cancelling
the current edit session

3-30 58X7338

Primary commands are executed after pressing the enter key or any
function key. The Home key moves your cursor to the primary command
line from other areas of the screen.

Primary
Command Description

CANCEL Cancels current file and ends session
CAPS Change character from lower to upper case
CHANGE Changes character strings in current file
DEL Deletes a file
FILES Displays names and types of files
FIND Finds character strings in current file
GETFILE Gets and inserts files into current file
LOCATE Locates (positions) a line number at top line
PRINT Prints contents of an entire file
PUTFILE Puts all or part of a file into current file
RENAME Renames a file
SAVE Saves current file without ending session

Recalls last primary command executed

Chapter 3. Using the AML/Entry Editor 3-31

Using the Primary Command FIND

This primary command allows you to search for strings that contain
embedded blanks. The leading character of the search string is an
optional / (slash) character. In that case, the slash represents the
delimiter of the string.

Syntax for the delimited FIND command is outlined below.

F /string/ [col-1] [col-2]

• The only parameter required is the string preceded by the delimiter
character, either a blank or a / (slash).

• The string is terminated by a second / (slash) or the last non-blank
character.

• A blank character must follow the FIND or F command.

• Additional parameters, if any, must be separated by at least one
blank.

• The blank space between the last delimiter character and col-1 is
optional.

• The columns are counted beginning with the first character to the
right of the line numbers.

• If you enter the col-1 parameter without the col-2 parameter, the
search begins in the first column specified and continues to the end
of the line. Col-2 can not be specified without co•-1 also being
specified.

• If you specify additional parameters, the second / (slash) must be
specified.

The FIND command finds the next occurrence of a character string within
your AML/Entry program. The command may be abbreviated as shown in this
exercise.

The search always begins on the top line of the display and proceeds
towards the end of the file. If you are searching for a string that is
on a line before the line at the top of the screen, the string is not
found.

The optional col-1 parameter specifies the a beginning column for the
search. The optional col-2 parameter specifies an ending column for the
search.

3-32 58X7338

Your screen displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> T013•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

You: Press the Home key.

System: Cursor moves to the command input line.

The next instruction finds the string "ROBOT" in the text. The
blank space is required between the command and the string.

You: Enter: F ROBOT

System: Displays the screen:

1

07-08-1985
COMMAND INPUT ---> F ROBOT
 - ***********************> Tu•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> imiu•F•FILE <*********************

Chapter 3. Using the AML/Entry Editor 3-33

You: Press the enter () key:

System: Screen blanks and then line 4, which contained the character
string ROBOT, is displayed at the top of the screen window.
The cursor is located under the first character of the string
that was found. A message flashes in the upper right of the
screen to indicate that the string was found.
The screen displays:

07-08-1985 - - - - STRING FOUND--
COMMAND INPUT --->
 - ***********************> ne•0F•FILE <************************

4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

You: Clear the flashing message by pressing the F2 key.
(It disappears the next time the enter key is pressed, also.)

You: Press the Home key.

System: Cursor moves to command input line.

The next instruction finds the string "RO" while restricting the search
between columns 10 and 15 of the display.

You: Enter F RO 10 15

System: Displays the screen:

07-08-1985 - - - - STRING FOUND---
COMMAND INPUT ---> F RO 10 15
 - ***********************> Top•u•FILE <************************

4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

3-34 58)(7338

You: Press the enter () key:

System: Computer searches for the string RO located within columns
10 through 15. It skips over the string RO contained in the
word ROBOT in line 4 at the top of the screen because this RO
is in columns 16 through 17. The columns are counted beginning
with the first character to the right of the line numbers. The
first occurrence of string RO is found within columns 10 through
15 of line 6 as part of the word "PROGRAM."

Using the function key in the next step brings the editor screen to
the top of the program.

You: Press: F9

System: Screen scrolls to display the TOP•0F•FILE line and
places the cursor on the primary command line.

The next key repeats the search for the string RO in columns 10
through 15.

You: Press: F4

System: The computer repeats the search for the string RO and
locates the string in line 1. The screen displays:

........................... 07-08-1985 - - - - STRING FOUND---
COMMAND INPUT --->
 - - ***********************> TomR.FILE t************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> BOTTom•a•FILE <*********************

You: Press: F9

System: Screen scrolls to display the TOP•O•TILE line and
places the cursor on the primary command line.

Chapter 3. Using the AML/Entry Editor 3-35

Using the Primary Command CHANGE

This primary command allows you to search for strings that contain
embedded blanks, and change the search string to a new string that may
contain embedded blanks. The leading character of the search string is
an optional / (slash) character. In that case, the optional / (slash)
represents the delimiter of the string.

Syntax for the delimited CHANGE command is outlined below.

C /stringl/string2/ [col-1] [col-2] [ALL]

• The required parameters are stringl and string2, preceded and
followed by the delimiter character.

• There must be three delimiter characters present. (Stringl and
string2 may not contain the slash character.)

• A blank character must follow the CHANGE or C command.

• Additional parameters, if any, must be separated by at least one
blank.

• The blank space between the last delimiter character and col-1 is
optional.

• The columns are counted beginning with the first character to the
right of the line numbers.

• If you enter the col-1 parameter without the col-2 parameter, the
search begins in the first column specified and continues to the end
of the line. col-2 can not be specified without col-1 also being
specified. If both col-1 and col-2 are specified, the search takes
place between the specified columns only.

• The ALL parameter may be specified alone or with the column
parameters. The ALL parameter specifies that every occurrence of
the search string will be changed if it falls between col-1 and
col-2.

The CHANGE command is used to find and change the next occurrence of
a character string within your AML/Entry program. The command may be
abbreviated as C, as shown in the following exercise.

3-36 58X7338

This exercise changes characters in this screen:

07-08-1985
COMMAND INPUT --->
 - ***********************> Tu•OF•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - *************AA********> BOTTom•OF•FILE <*********************

The next step contains the command, the string to be changed, and the
desired new string. Spaces are required between the three items.

You: Enter: C VERSATILE FAST

System: Displays the screen:

 - - - - - - - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> C VERSATILE FAST
 - ***********************> Tcp•u•FILE <********-.4**************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTOM• OF •FILE <**************** *

Chapter 3. Using the AML/Entry Editor 3-37

You: Press the enter () key:

System: The STRING FOUND message is displayed. The first occurrence
of the string VERSATILE is changed to the string FAST on line
number 5. The cursor is positioned after the last character of
the changed string.

The next step repeats the change command.

You: Press: F5.

System: Repeats change for the next occurrence of the string,
which is on line 9.

You: Press: F9.

System: Screen scrolls to display the TOP.OF.FILE line. The cursor
is located on the command input line.

The next step changes all occurrences of the string FAST to the
string VERSATILE.

You: Enter: C FAST VERSATILE ALL

System: Displays the screen:

 - - - - - - - - - - - - - 07-08-1985 - - - - - - - - - - -
COMMAND INPUT ---> C FAST VERSATILE ALL
 - - ***********************> TOP•OF•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS FAST
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS FAST

 - - ***********************> Barrom•u•FILE <*********************

You: Press the enter () key:

System: The screen blanks and the message 2 CHANGES is displayed.
Line 9 is displayed (last occurrence) and the cursor is located
after the last character of the changed string. The screen
displays:

3-38 58X7338

 - - - - - - - - - - - - - 07-08-1985 - - - - 2 CHANGES - -
COMMAND INPUT ---> C FAST VERSATILE ALL
.... ***********************> Topp0F.FILE <************************

9 IS VERSATILE
 - - ***********************> BOTT014.0F.FILE <*********************

You: Press: F9

System: Screen blanks and refreshes without flashing the message.
Screen is scrolled to the top of the program. The cursor is on
the primary command line.

The C primary command also accepts column parameters after the new
string characters. The format for entering all the options for the C
command is:

C stringl string2 [coll] [col2] [ALL]

The items in brackets are optional.

The next instructions change the string "SY" to "SI", for all
occurrences, while restricting the search between columns 3 and 4 of the
display. The columns are counted beginning with the first character to
the right of the line numbers.

You: Enter C SY SI 3 4 ALL

System: Displays the screen:

 - - - - - - - - - - - - - ,07-08-1985 - - - - - - - - - - -
COMMAND INPUT ---> C SY SI 3 4 ALL
 - - ***********************> Tu•u•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> Burrom•u•FILE <*********************

Chapter 3. Using the AML/Entry Editor 3-39

You: Press the F5 key.

System: Computer searches for all occurrences of the string SY located
in columns 3 and 4. It skips over the string SY contained in the
word SYSTEM in lines 3 and 7 because the string SY is in columns
23 and 24. The screen blanks and the message 3 CHANGES is
displayed. This message indicates string SY has been changed to
to string SI in all occurrences in columns 3 and 4. Line 6 is
is displayed (last occurrence) and the cursor is located after
the last character of the changed string. The screen displays:

07-08-1985 - - - - 3 CHANGES
COMMAND INPUT --->
 - - ***********************> Tcw•u•FILE <************************

6 EASI TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> BOTTom•u•FILE <*********************

Using the function key in the next step brings the editor screen to the
top of the program.

You: Press: F9 •

•
3-40 58X7338

System: Screen scrolls to display line number 1. The cursor is on the
primary command line and all changes are displayed. The screen
displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> n•o•TILE <************************

1 EASI TO PROGRAM
2 EASI TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASI TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***************AA*****> BOTT01.1•0F•FILE <*********************

Repeat the previous exercise for primary command C with column
parameters to return the string SI to the string SY.

Chapter 3. Using the AML/Entry Editor 3-41

Using the Primary Command LOCATE

The LOCATE command puts the indicated line at the top of the program
window. This command may be abbreviated L, as shown in this exercise.

The screen displays:

07-08-1985
COMMAND INPUT --->
 - ***********************> Top•u•FILE .c************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

... ***********************> BOTTOM•NN•TILE <*********************

In this exercise, line 8 is to be located.

You: Enter: L 8

System: Displays the screen:

07-08-1985
COMMAND INPUT ---> L 8
 - ***********************> Top•co•TILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

3-42 58X7338

You: Press the enter () key:

System: Screen blanks and refreshes with line 8 at the top of the
window. The cursor is located in the line command area of
line 8.

 - - - - - - - - - - - - - 07-08-1985 - - - - - - - - - - -
COMMAND INPUT --->

***********************> Top.u.FILE.<************************
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - *******************t***> RoTTom•u•FILE <*********************

You: Press: Home

The next instructions show that the command locates a line
toward the top of the program.

You: Enter: L 1 and press the enter key ().

System: Screen displays line 1.

You: Press: F9

System: Screen displays the TOP•OF•FILE line and the cursor
is on the primary command line.

•
Chapter 3. Using the AML/Entry Editor 3-43

Using the Primary Command SAVE •The SAVE command stores the present editor information onto a
diskette. Use this command often while updating or creating a program
to protect the information in the program from inadvertent loss caused
by power loss.

07-08-1985
COMMAND INPUT --->
 - ***********************> Tu•o•TILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

The next steps are used for storing unnamed programs.
The program is called stations.

You: Enter: SAVE STATION1

System: Displays the screen:

 - - - - - - - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> SAVE STATION1
 - ***********************> ma•u•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - **** —***************> Barra•o•TILE <*********************

You: Press the enter () key:

System: Drive A in-use LED comes on (if the file is being saved on
drive A). The screen refreshes after the file has been saved
and displays the program name in the upper left corner. •

3-44 58X7338

--STATION1.AML - - - - - - - 07-08-1985 - - - - - - - - - - -
COMMAND INPUT --->
 - - ***********************> Top•o•ILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> BOTT014•0F•FILE <*********************

If you are saving a previously named program, you would enter the
command SAVE and press the enter key.

Chapter 3. Using the AML/Entry Editor 3-45

Using the Primary Command FILES •The FILES command displays names and types of file(s) that are stored
on the current diskette. This exercise shows you how to display files
when you are using the editor.

The screen displays:

--STATION1.AML - - - - - - 07-08-1985. - - - - - - - - - -
COMMAND INPUT --->
 - ***********************> Top.•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM •
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

You: Type: FILES

System: Displays the screen:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> FILES
 - ***********************> Tu•u•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•u•FILE <*********************

You: Press the enter () key:

System: Screen displays a listing of the files on the current diskette.
The list should be similar to the following display:

•

3-46 58X7338

COMMAND .COM PRACTICE .AML MENU .EXE EDIT .EXE CFG .EXE
MSGCFG .TXT MSGZED1 .TXT MSGZED2 .TXT AUTOEXEC.BAT STATION1.AML
COMAID .EXE MSGCMP .TXT MSGCOM2 .TXT MSGMENU .TXT COMPILER.EXE
MSGCOM .TXT CONFIG .SYS

You: Press any key on the keyboard:

System: Screen blanks and then refreshes; it
The cursor is located on the command

The next instructions show the method used to
types of files on a specific drive.

You: Enter: FILES B:*.AML
You: Press the enter () key.

displays the editor.
input line.

display only certain

System: Screen displays AML type files.

You: Press any key on the keyboard:

System: Screen blanks and then refreshes; it displays the editor.
The cursor is located on the command input line.

Chapter 3. Using the AML/Entry Editor 3-47

Using. the Primary Command ? (Recall)

The ? primary command is used in the command input area to display or
recall the last primary command executed.

The screen displays:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT --->
 - ***********************> Top•u•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> Bgrag•u•FILE <*********************

y,The next steps are used for recalling the primary
command FILES, which was just executed, by using the
tj primary command ?.

You: Enter: ? character.

System: Displays the screen:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> ?
 - ***********************> Top•u•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BoTTom•u•FILE <*********************

3-48 58X7338

You: Press the enter () key.

System: Screen displays the FILES B:*.AML command on the primary
command line.

The ?, as a DOS command, can be used in conjunction with the primary
command FILES to locate certain types of files. A ? in a filename or
extension means that any character can be in that position. All files
that have a name that matches in all except the ? position are selected.

You: Enter: FILES STATION? .AML
You: Press the enter () key.

System: Screen displays all STATION files with an extension of .AML.

Chapter 3. Using the AML/Entry Editor 3-49

Using the Primary Command RENAME

The RENAME command renames files while you are working in the editor.
When renaming files, you must also include the type of file (in this
case, .AML) if no device type is entered the default device is
assumed. In this exercise, the file stationl is renamed station2.

The system displays this screen when you start:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT --->
- ***********************> Top.opTILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BoTTom•01•FILE <*********************

You: Enter: RENAME STATION1.AML STATION2.AML

System: Displays the screen:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> RENAME STATION1.AML STATION2.AML
 - ***********************> 1.013•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BoTTom•op•FILE <*********************

You: Press the enter () key:

System: Screen refreshes with the editor displayed. The program
name has not changed at the top of the screen.

3-50 58X7338

Note: When you use the key F8 to exit the program, the program
is saved under the name appearing at the top left of the screen.
If you load a file into the editor and then rename the file, the
program is saved under the old name, and not under the new name
when you exit using F8 .

Chapter 3. Using the AML/Entry Editor 3-51

Using the Primary Command GETFILE

This primary command allows you to insert other files into the file
currently being edited. Syntax of the command is outlined below.

GETFILE filename

In addition to filename (if no extension is entered, the Editor assumes
.AML), you must specify where the included text is to be placed. This
is accomplished by entering an A (after) or a B (before) in the line
command area. A or B must be specified before the GETFILE command is
entered on the primary command line and the <--J(enter) key is pressed.
If either A or B is not specified when GETFILE is entered, an error
results and the command must be re-entered (unless, the ? command is
used to recall the command). Errors are also issued for an improper
filename, file not found, or filename not specified. In all cases,
whatever was entered in the line command area remains both visible and
active.

If device type is specified the default drive is assumed.

An example GETFILE command is outlined below.

--STATION1.AML - - - - - - - 07-08-1985 - - - - - - - - - - -
COMMAND INPUT ---> GETFILE STATION2.AML
 - - ***********************> Top•u•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM

A 3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> BoTTom•u•FILE <*********************

This example copies the contents of the STATION2.AML file into the
STATION1.AML file after line 3.

3-52 58X7338

Using the Primary Command PUTFILE

This primary command allows you to extract all or part of the currently
edited text and place it into a file on disk. Syntax of the command is
outlined below.

PUTFILE filename

In addition to filename (if no extension is entered, the Editor assumes
.AML), you must specify which lines of text currently being edited are
to be extracted and placed into the new file. This is accomplished by
entering the CC or C line command in the line command area. If you want
to extract a single line, the C must be placed adjacent to that line
before entering a PUTFILE command. If a block of lines are to be
extracted, specify the CC command in the appropriate locations.

C or a pair of CC identifiers must be specified before the PUTFILE
command is entered on the primary command line and the <- 1 (enter) key
is pressed. If either C or CC is not specified when PUTFILE is entered,
an error results and the command must be re-entered (unless, the ?
command is used to recall the command). Error messages are also issued
for an improper filename or for the name of a file that already exists.

You can not place text into a file that already exists. Appending to an
existing file is not allowed.

An example PUTFILE command is outlined below.

--STATION1.AML - - - - - - - 07-08-1985 - - - - - - - - - - -
COMMAND INPUT ---> PUTFILE STATION2.AML
 - - ***********************> Top•r•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM

CC 3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT

CC 5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> BOTTom•u•FILE <*********************

This example copies the marked contents (lines 3 through 5) of the
STATION1.AML file into a new file labelled STATION2.AML.

Chapter 3. Using the AML/Entry Editor 3-53

Commands That Allow Expressions

Expressions are allowed in the following AML/E commands:

• COMPC(exp < exp,label);

• SETC(counter,exp);

• TESTC(exp,exp,label);

• ZMOVE(exp);

Using expressions and functions can make AML/E programs very efficient.
For example, applications should use the arithmetic function form of
CSTATUS and MSTATUS instead of the command form, as shown below:

COMPC(MSTATUS()=0,CONTINUE);

Using the command form would require the declaration of a counter, the
MSTATUS command, and then finally the COMPC command. Three AML/Entry
lines have been replaced by one.

Many other AML/Entry commands (i.e. GUARDI, LINEAR, PAYLOAD, ZONE, to
name a few) do not allow expressions as arguments. They do, however,
allow counters as arguments. An alternate solution is to use the SETC
command to set a counter, and then use the counter in these commands.

Expressions are not allowed within the ITERATE statement. Even though
most of the above commands may appear in an ITERATE statement, they must
appear "stand-alone" for expressions to be legal. When these verbs are
used inside an ITERATE statement, the arguments that are unpacked from
the aggregates and actually used depend on the command. See the
discussion of SETC, TESTC, and ZMOVE in Appendix A, "Command/Keyword
Reference."

4-54 58X7338

You: Press the enter () key:

System: Screen displays CURRENTLY PRINTING and the printer
starts the printing operation. Printer output appears as
follows:

STATION1.AML 07-08-85
PAGE 1

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

System: Displays PRINT COMPLETE message when finished.

Note: The Personal Computer must be hooked up to a printer that
is online. If the printer is not present and running, then there
is a 20-30 second time period where nothing happens, after which
the message "UNABLE TO PRINT" appears.

Chapter 3. Using the AML/Entry Editor 3-55

Using the Primary Command DEL (Delete)

The DEL command deletes a file from the diskette. THIS COMMAND SHOULD
NOT BE USED TO DELETE ANY OF THE AML/E SYSTEM FILES.

In the following exercise, you are deleting the file STATION2.AML from
your diskette. The screen displays:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT --->
 - .***********************> Top•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> Burrom•0F•FILE <*********************

You: Enter: DEL STATION2.AML

System: Displays the screen:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> DEL STATION2.AML
 - **********************> Tu.u.FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE .IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BOTTom•01-•FILE <*********************

You: Press the enter () key:

System: Drive in-use LED comes on. After processing is complete,
the screen displays the contents of the editor. In this case,
STATION1 is the program in the editor.

•

•
3-56 58X7338

Using the Primary Command CANCEL

The CANCEL command lets you exit the editor without saving a file copy
from the edit session.

The screen displays the following at the beginning of this exercise:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT --->
 - ***********************> Top•op•pILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> BoTTom•op•pILE <*********************

You: Enter: CANCEL

System: Displays the screen:

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> CANCEL
 - ***********************> Top•op•pILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM
3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> 'mm4.01..1.111 <*********************

Your Press the enter () key:

System: The screen blanks and then displays the main menu. The Personal
Computer has erased the file that was in the editor from memory.

Chapter 3. Using the AML/Entry Editor 3-57

Using the Primary Command CAPS

The CAPS command converts any lower case alphabetic characters to
uppercase alphabetic characters. The AML/Entry editor only allows
characters to be entered in upper case. However the user may use other
techniques to enter data into a file, which may cause lower case
characters to be entered. By using the CAPS command to convert all
the alphabetic characters to uppercase, the FIND and CHANGE commands can
then be used.

3-58 58X7338

CHAPTER 4. LEARNING THE AML/ENTRY LANGUAGE

This chapter introduces you to the AML/Entry language. It is important
that you read this chapter before you attempt to build an application
program. This is not intended to be a reference chapter. Inst,ead, it
is a teaching chapter. You will first be taught simple commands to make
the robot move and then be given more difficult instructions to enhance
your program application. The information listed below is included in
this chapter.

• Structural overview of the AML/Entry application program

• Rules for usage and examples of AML/Entry reserved words and
commands

• Techniques to help simplify programming

— Declarations

— Constants

— Variables

- Expressions

- Built-in arithmetic functions

— Compiler directives

• Usage of Subroutines

• Advanced topics for program enhancement

— Pallets

- Regions

- Host Communications

Note: In this chapter, the AML/Entry program examples are,
except where marked, written for use on a manipulator with a Home
position of (650,0,0,0). If the Home position on your manipulator
is different, you may need to change the points in the examples to
produce valid results.

Chapter 4. Learning the AML/Entry Language 4-1

A STRUCTURAL OVERVIEW

The following sections deal with basic information essential to all
AML/Entry programs.

Language Structure

AML/Entry is a ,subroutine-oriented language. A subroutine is a small
unit of a proriantith — a 61171073 —defined beginning and ending. The
statements that form a subroutine usually relate logically to achieve a
result, such as moving the arm.

Within your user subroutines are AML/Entry statements, which send
ins the • s ML/Entry statements
look like English-language commands. Some of these commands may have
additional information enclosed in parentheses, such as names,
.Qpnditions for decisions, or values or expressions for'control. Some
AML/Entry statements do not perform any visible action. These statements
perform functions such as reserving storage for your program's
variables, names, and constants.

Your Application Program in the Controller

The IBM Personal Computer converts AML/Entry statements into a form
suitable for the controller. The converted program sent to the
controller is stored in one of five memory partitions. These partitions
vary in size according to the program size. It is possible for one
large program to use all the memory available in the controller.

When the program is selected and run by the controller, the manipulator
performs the sequence of actions dictated by the program. After the
last statement is executed, the controller starts over at the beginning
of the application program. This sequence is ieiTiet—it6d—tnrt-ti operator
intervention or an error condition stops the program.

When you transfer a program to the controller from the Personal
Computer, it remains in the assigned memory partition until you send
another application program to that same partition or use the Unload
function.

Comments

Comments are very helpful in your program. They are useful in trying to
understand or update your program. They have no effect on program
execution whatsoever, and should be seen only as a programming aid. The
comment is preceded by a double hyphen 1--41,,,and is written on the
remainder of the line. The double hyphen indicates to the software that
the remainder of line contains your comments and should be ignored.

An example of a comment used with the AML/Entry SUBR statement:

4-2 58X7338

STATION1:$UBR; --STATION1 ASSEMBLES GEARS

Note: AML/Entry Version 4 also allows expressions inside certain
commands. Expressions can consist of unary minuses. The reader
must not forget that two consecutive dashes (-) indicates the
start of a comment. Thus the following will cause an error:

SETC(A,A--A); -- Add A to itself

This is because the first two dashes are not treated as a minus
followed by a unary minus, but instead as the start of the
comment. To work correctly, a space must be included between the
first two dashes:

--Add A to itself

Beginning and Ending Your Program

Notice the TOP•OF•FILE and BOTTOM•0F•FILE lines in the editor. These
lines are not a part of the application program and are not saved in the
program file. To start your program in the editor, use the insert line
command to open a window between the TOP•OP•TILE and BOTTOM•OP•FILE
lines.

Two commands are required for every application program. The first is an
id: BR; statement. This is your outer or main subroutine; the ID is
a en ifier. The second is an laiw statement for the outer
subroutine. In the below outlined example, the END statement is shown
on line 2. By using the editor's I line command, lines are inserted
between the SUER and END lines. Thus the END line stays at the end of
the application program as more lines are inserted.

A description of the characteristics of AML/Entry statements follows the
outlined example.

Chapter 4. Learning the AML/Entry Language 4-3

_Line number
1 _Identifier
I I _ Definition operator
I I
+ + 4
1 MAIN :SUBR; --BEGINNING OF SUBROUTINE

I I 1 Comments
I__ Statement delimiter

1 Keyword for subroutine

Line number
I Keyword
I I
4 4
2 END; --END OF SUBROUTINE

1 Comments
1 Statement delimiter

Line Number

Line numbers are used as reference guides, enabling you to refer to
specific lines of the program quickly. The numbers are assigned
sequentially by the editor as you insert, delete, copy or move lines.

Identifier

MAIN is an identifier, which is the name for the program. Identifier
rules are listed below.

• Up to 72 characters

• First character must be alphabetic

• Remaining characters must be either alphabetic, numeric, or the
underscore () character

• An underscore can not be the last character

• Special characters, such as an asterisk (*), are not permitted

Examples of valid identifiers are outlined below.

STATION1:SUBR; or STATION 1:SUBR;

Examples of invalid use are outlined below.

1STATION:SUBR; or STATION*1:SUBR;

Definition Operator

The colon (:) is a definition operator. The colon is a required
separator between the identifier and the keyword command.

Keyword/Command

SUBR is an AML/Entry keyword that identifies the subroutine. Keywords
are reserved words that have special meaning in the language. A list of
all keywords is provided in this chapter. A detailed section on
subroutines is found in the latter part of this chapter.

END is a keyword, that is always the last line of each subroutine., You
must use a semicolon after each END keyword. No other AML/Entry
statement is permitted on the END statement line (after the END
statement).

Statement Delimiter

The semicolon (;) is a delimiter that indicates the information for the
statement is complete. You must use a semicolon at the end of each
AML/Entry statement.

Chapter 4. Learning the AML/Entry Language 4-5

Keyword Use Description

ABS Expressions
ATAN Expressions
ATAN2 Expressions
COS Expressions
COUNTER Counter
CSTATUS Expressions
END End
FROMPT Expressions
GROUP The Group
MSTATUS Expressions
NEW Constant
PALLET Pallet
PT Point
REGION Region
SIN Expressions
SQRT Expressions
STATIC Storage

SUBR Subroutine
TAN Expressions
TESTI Expressions
TESTI' Expressions
TRUNC Expressions

Returns absolute value of arg
Returns arc tangent of arg
Returns arc tangent of args
Returns cosine of arg
Defines counter name
Returns communications status
Ends subroutine
Returns coordinate of point
Groups related data items
Returns motion status
Identifies constants
Defines pallet name
Defines a point data type
Defines a region name
Returns sine of arg
Returns square root of arg
Defines counter, pallet, and
group storage
Identifies a subroutine
Returns tangent of arg
Returns state of Digital Input
Returns current part of pallet
Returns greatest integer <= arg

AML/ENTRY RESERVED WORDS AND COMMANDS

The following sections are guidelines on using AML/Entry. The first
section contains two lists of reserved words with brief definitions.
The second section describes, in detail, several command words.
Descriptions of some of the command words will be incorporated in later
sections.

AML/Entry Reserved Words

Certain words have special meaning in AML/Entry language. These words
are called reserved words.

Your program must not attempt to use any of the reserved words for other
than the intended use. For example, your program can not create a
subroutine named PT because this name is already a reserved word.

The reserved words include kezoz1.sand c22pAgdL. Keywords are used to
defirir—rrriTOrThr"the computer. Commands cause an action by the
manipulator or controller.

The following reserved word list contains keywords and their
descriptions. The next reserved word list describes commands.

Command Use Description

BRANCH
BREAKPOINT
COMP0.,

ICSTATUS
DECR
DELAY
DPMOVE
GET
GETPART
GRASP
GUARDI
INCR
ITERATE
LINEAR

4 MSTATUS
NEXTPART
ANOGUARD
• PAYLOAD
PREVPART
PMOVE
PUT
RELEASE
SETC
SETPART
TESTC
TESTI
TESTP
WAITI
WHERE
WRITEO
XMOVE
ZMOVE
ZONE

Flow/Control
Flow/Control
Flow/Control
Sensor
Counter
Motion
Motion
Host ommunication
Palletizing
Motion
Sensor
Counter
Flow/Control
Motion
Sensor
Palletizing
Sensor
Motion
Palletizing
Motion
Host/Communication
Motion
Counter
Palletizing
Counter
Sensor
Palletizing
Sensor
Sensor
Sensor
Motion
Motion
Motion

Transfers control
Predetermined stop in program
Compares counters
Controller enabled status
Decrements counter by 1
Delays statement execution
Moves arm specified distance
Controller requires data
Moves arm to current part
Closes the gripper
Guards motion (uses DI port)
Increments counter by 1
Repeats execution
Changes motion (arc-straight)
Move completion status
Increases current part by 1
Stops the guard feature
Controls tool-tip speed
Decrease current part by 1
Moves arm specified location
Controller wants to send data
Opens gripper
Sets counter
Sets current part
Tests counter
Test DI point
Test current part counter
Waits for DI point switch
Updates a point definition
Opens or closes a DO relay
Regional movement
Absolute Z-axis movement
Changes the settle

The following section gives detailed descriptions of several of the
command words. ' will help you to become familiar with manipulator
movements. The section begins with Motion Commands.

Chapter 4. Learning the AML/Entry Language 4-7

Command

DELAY
DPMOVE
GETPART
GRASP
LEFT
LINEAR
PAYLOAD
PMOVE
RELEASE
RIGHT
XMOVE
ZMOVE
ZONE

Description

Delays statement execution
Moves arm specified distance
Movement within a pallet
Closes the gripper
Changes arm mode (7545-800S only)
Changes motion (arc-straight)
Controls tool-tip speed
Moves arm specified location
Opens gripper (DO 2 switch)
Changes arm mode (7545-800S only)
Regional movement
Absolute Z-axis movement
Changes the settle

MOTION Commands

The commands described in this section affect manipulator motion. These
motion commands are English-like words that cause an action. Also
described in this section is the DELAY command. The DELAY command is not
a motion command, but it is described in this section because it is
primarily used with motion commands. If a command uses any parameters,
the parameters follow the command and are enclosed in parentheses.

DELAY Command

DELAY(seconds);

The DELAY command suspends execution of the program for the time (in
seconds) specified as a parameter. Delays are usually needed after every
GRASP or RELEASE command to allow the mechanical motion of the gripper
to complete. Delays can range from 0 to 25.5 seconds, in increments of
0.1 seconds. The seconds can consist of a simple constant or a counter.
Examples of the command's usage are outlined below.

DELAY(2); -- Causes a delay of 2 seconds
DELAY(CTRA); -- Causes a delay of CTRA seconds

DPMOVE Command

DPMOVE(vector);

The DPMOVE command moves the arm in the direction of the specified
vector. It is useful for small moves from a location obtained using one
of the other move commands, such as PMOVE, or the pallet move command
GETPART.

The vector contains changes for the X, Y, Z, and R-axes coordinates.
Commands in AML/Entry appear as:

DPMOVE(<AX,AY,AZ,AR>);

Note: In this chapter the term "delta" or "A" refers to the
difference between two positions.

An example of the changes in the coordinates is explained below.

Example: The arm is located at the coordinates of X=300, Y=450, Z=-150
and R=90

°
. A part is needed from the coordinates X=310, Y=425, Z=-160,

and R=25
°
. The delta for X is 10, which is the difference between 300

and 310. The delta for Y is -25, which is the difference between 450 and
the 425. The delta for Z is -10, which is the difference between -150
and -160. The change in roll is -65

°
, which is the difference between

the 90
°
 and the 25

°
. The command in the program appears as:

DPMOVE(<10,-25,-10,-65>);

GETPART Command

GETPART(pallet_name);

The GETPART command allows movement within a pallet. GETPART will be
discussed later in the chapter under the section on pallets.

GRASP Command

GRASP;

The GRASP command closes the pQ__2relu„ , which allows air to flow
through the Center of the Z-axis shaft. If you have a gripper that is
controlled by the Z-axis shaft air supply, the gripper closes. A DELAY
command may be necessary to allow the gripper to close.

LEFT Command (Valid on 7545 -800S Only)

LEFT;

The LEFT command instructs the 7545-800S manipulator to switch to the
left arm mode. Once this command is executed, all future motions will
be performed with the 7545-800S manipulator in left arm mode. This
command is only valid for the 7545-800S manipulator because it is the
only supported manipulator which has a symmetric elbow (theta two)
joint.

The following figure shows the workspace of a 7545-800S (a 7545 with RPQ
R00100 installed). Points designated by a "*" or a flop, can be reached
in either left or right mode, points designated by an "R" or an "L" can
only be reached in right or left mode, respectively.

Chapter 4.. Learning the AML/Entry Language 4-9

The LEFT and RIGHT commands affect all subsequent manipulator motion
until another LEFT or RIGHT command is issued.

• If the AML/E program issues a motion command (PMOVE, DPMOVE, XMOVE,
ZMOVE, or GETPART) that can be reached in the current mode, the
motion will be performed.

For example, if the manipulator is in left mode and the AML/E
program issues a motion command that can be reached in left mode,
the manipulator would move to the point in left mode.

• If the AML/E program issues a motion command (PMOVE, DPMOVE, XMOVE,
ZMOVE, or GETPART) that rAnnot,be reached in the current mode, the
motion yill not be performed, and a data error will occur.

For example, if the manipulator is in left mode and the AML/E
program issues a motion command that can only be reached in right
mode, the motion will not be performed, and a data error will occur.
In this case, the user should issue a RIGHT command before the
move.

If the application uses points that are in the "left-mode-only" lobe
or the "right-mode-only" lobe, the application should first issue a
LEFT or a RIGHT command so the arm can change modes, rather than
causing a data error to occur.

Linear motion that causes a change in the arm configuration will also
give a data error. Thus if the arm is in left mode, and the application
issues:

RIGHT;
LINEAR(30);
DPMOVE(<-100,0,0,0>);

4-10 58X7338

a data error will result. Thus, if linear motion is to be used for a
motion command that might cause a data error, a LINEAR(0); should be
issued.

LINEAR Command

LINEAR(quality);

The LINEAR command allows the arm to be run).. ,_.t alir).2EL suuliode....not' In
this mode, the path followed by the arm in moving to the target position
of a move command is approximately along a straight line. When linear
motion mode is on,11/1-70Vr571;7771 .e linear; the velocity selecte
the user is suspended; the controller selects vagues appropr a e to the
!Talon.

The LINEAR command is only effective until the outer END statement of
the program. When the END statement of the prog7EFTS;TICountered, the
arm returns to the normal type of motion until a new LINEAR statement is
encountered.

The " uality" represents the deviation from a straight line. A one (1)
for the q ity" gives the straightest achievable move between two
points. A fifty (50) for the "quality" gives the greatest deviation from
a straight line. A low "quality" value means straighter arm movement,
but it also Means slower arm movement. The "quality" numbers and their
corresponding LINEAR effects are listed in tabular form in the
appendices. To deactivate linear motion mode and return to a normal
mode, the value 0 is used for "quality." Examples of the command's usage
are outlined below

= Straight as possible
LINEARK0); = Exit linear
LINEARK50); = Fastest with greatest error

Note: Linear motion is not valid throughout the work space; the
valid linear working area description is in the IBS Manufacturing
Systems Specification Guide, 8577126.
Caution must be taken in teaching the end-points of linear moves;
the path must remain in the valid linear working area at all
times.

PAYLOAD Command

PAYLOAD(speed);

This command allows you to control tool-tip speed by overriding the
speed switches or defaulting to those switches. The value must be in
the 0 through 19 range. All values greater than 10 are slower than
PAYLOAD value 1. The second digit of the parameter multiplied by 10
gives the perCentage of the PAYLOAD(1) speed. For example, PAYLOAD(13)
is 30% of the PAYLOAD(1) speed. PAYLOAD(0) sets the payload to the
switch value.

Chapter 4. Learning the AML/Entry Language 4-11

The setting selected is observed by all PMOVEs, DPMOVEs, ZMOVEs,
GETPARTs, and XMOVEs, except when the LINEAR command is active. The
value in the command is a whole number that reflects the speed
attainable. The PAYLOAD command is only effective until the last END
statement of the program. When the END statement of the program is
encountered, the speed-switch settings take control until a new PAYLOAD
statement is encountered.

The actual speed is a function of the value, the particular manipulator,
and the weight of the payload carried. The relationship is given in
tabular form in the appendixes with the description of this command.
Examples of the Payload command are listed below.

PAYLOAD(0);
PAYLOAD(1);
PAYLOAD(10);
PAYLOAD(12);
PAYLOAD(19);

= Default to switches
= Slow with heavy load
= Fast with light load
= 20 percent of PAYLOAD(1);
= 90 percent of PAYLOAD(1);

PMOVE Command

PMOVE(point);

In AML/Entry, the PMOVE instruction moves the arm from the present point
in the work area to a new location. X, Y, Z, and Roll coordinates must
be specified.

The PMOVE command is outlined below.

PMOVE(PT(x,y,z,r));
PMOVE(name);

The form with the keyword PT uses a cartesian coordinate value for the
X, Y, and Z-axes, and a roll value in degrees for the R-axis. The
cartesian coordinates are in millimeters unless you have changed the
AML/Entry program to work in inches as described in Chapter 2, "Getting
Started on the IBM Personal Computer."

The PMOVE with a name uses a declared name as a point. In the
declaration, the name is given values for x, y, z, and r. More
information about declarations is provided later in this chapter.

RELEASE Command

RELEASE; /

The RELEASE command opens the DO 2 relay, which stops the air-flow
through the center of the Z-axis shaft. If you have a gripper that is
controlled by the Z-axis shaft air supply, the gripper opens. A DELAY
command may be necessary to allow the gripper to open.

4-12 58X7338

•

RIGHT Command (Valid on 7545-800S Only)

RIGHT;

For an explanation of the RIGHT command, refer to "LEFT Command (Valid
on 7545-800S Only)" on page 4-9.

XMOVE Command

XMOVE(region_name,point_name);

The XMOVE command allows movement within a region, using resion4
coordinates. XMOVE will be discussed later in 'Region on page 4-82.

ZMOVE Command

ZMOVE(position);

This command is used for absolute Z-axis positioning. The position
parameter is the exact extension you want the Z-axis to be moved to. If
your program works in millimeters the range is from 0 (all the way up)
to -250 mm (fully extended). If your program is working in inches the
range is from ,0 (all the way up) to -9.8 inches (fully extended). It is
also possible to use the ZMOVE command with a name or even a complex
expression. The value of name or the expression must be in the Z-axis
moveable range. See "Expressions" on page 4-48 for more on expressions.

Examples of the ZMOVE command are outlined below.

ZMOVE(-200); --EXTEND TO 200 mm
ZMOVE(name) --EXTEND TO POSITION DECLARED IN NAME
ZMOVE(name/2); --EXTEND TO POSITION GIVEN BY NAME/2

ZONE Command

ZONE(factor);

The ZONE command allows Zhe accuracy of finding a particular point to be
specified. Position zones d6t1/176- how Physically close the arm must come
to the target position of a move for that motion to be considered
complete, and execution to continue. The factor used in the ZONE
command effects all movement commands executed after the ZONE command.
The ZONE command is only effective until the last END statement of the
program. When the END statement of the program is encountered, the zone
switch setting takes control unless a new ZONE statement is encountered.

Note: Reduction in settle time and target distance varies
between machine types.

The effective target-distance is a function of the value. Refer to the
Zone switch description in the IBM Manufacturing Systems Specifications
Guide, 8577126.

Chapter 4. Learning the AML/Entry Language 4-13

The lower the ZONE factor number (or expression), the longer the time
required to stabilize that position. This command can be used to
increase throughput by changing the ZONE factor to a maximum practical
value for goals that do not require precision. The value should range
from 0 to 15, where 0 means use the switch setting. A ZONE(3) is
equivalent to having the position zone switches 1 and 2 on. A ZONE(15)
is equivalent to having all four switches in the on position. There is
no program ZONE factor equivalent to all position switches in the off
position, but if you have all switches off and specify a ZONE(0), you
get the best possible precision.

ZONE(15); = Not precise but fast
ZONE(1); = More accurate goal '
ZONE(0); = Default to switches

Using Motion Statements

Motion statements are used to begin manipulator motions. The following
two examples show how to use several of the motion commands.

Using Move, Z-axis, Delay, and Gripper Commands

This example shows one method of using motion commands, along with
controlling a gripper and the Z-axis. On line 2, a constant "LEVEL" is
declared. This will be discussed in "Declarations" on page 4-30.

Some indentation is used in the program. The AML/Entry statements can be
anywhere on a line. The indentation shown in the example is a good
programming technique that allows the program to be read easier.

 - - **
1 MAIN:SUBR; --BEGINNING SUBROUTINE
2 LEVEL:NEW -50; --DECLARE A CONSTANT
3 PMOVE(PT(300,400,- 150,120));
4 ZMOVE(5*LEVEL); --MOVE TO "LEVEL" 5 (-250)
5 GRASP;
6 DELAY(1.0);
7 ZMOVE(3*LEVEL); --MOVE TO "LEVEL" 3 (-150)
8 DPMOVE(<10,-5,-10, -20>);
9 ZMOVE(5*LEVEL); --MOVE BACK TO "LEVEL" 5

10 RELEASE;
11 DELAY(1.0);
12 ZMOVE(0*LEVEL); --MOVE TO TOP LEVEL (0)
13 END; --END OF PROGRAM
14

 - - * A**

This program moves the arm between the two locations provided as a point
in line 3 and a vector move in line 8. At each location following the
move, the Z-axis is fully extended (line 4) and a gripper is closed
(line 5) or opened (line 10). A delay follows the gripper action to
allow the mechanical motion to complete before going to the next
statement.

4-14 58X7338

The first move statement (line 3) is a move to a location in the work
envelope with an X-coordinate of 300 millimeters, a Y-coordinate of 400
millimeters, 'a Z-coordinate of -150 millimeters, and a roll of 120

°
. The

roll is in a clockwise direction. The second move (line 8) uses a vector
instead of coordinates. The vector is plus 10 for X, minus 5 for Y,
minus 10 for Z, and minus 20 for R. The vector takes the arm to X=310,
Y=395, Z=-160, and R=1/00

°
.

The ZMOVE command (line 9) is used to extend the Z axis so it is at a
point 250 millimeters below its zero point. The other ZMOVE command
(line 12) fully retracts the Z-axis. Notice how expressions are used
within the ZMOVE commands. These could also have been coded as the
actual values of the expressions.

Chapter 4. Learning the AML/Entry Language 4-15

Using Linear, Speed, and Precise Motions

This example shows commands that affect the motion of the arm and the
precision of finding a goal.

**
1 MAIN:SUBR; --BEGINNING SUBROUTINE
2 LINEAR(1); --SLOW AND LOWEST ERROR LINE
3 PMOVE(PT(300 ,400,-50,0));
4 PMOVE(PT(350 ,400,-100,0));
5 LINEAR(0); --EXIT LINEAR MODE
6 ZONE(15); --LEAST PRECISION MOVES
7 PAYLOAD(1); --SLOW SPEED MOVES
8 PMOVE(PT(400 ,350,-25,0));
9 END; --END OF PROGRAM

10 **frn********
This program moves the arm between three points (lines 3, 4, and 8). The
LINEAR statement (line 2) puts the arm in a linear mode at a slow speed.
The linear precision is controlled by the number 1, enclosed in the
parentheses after the command. A straight-line move is performed by the
arm between the points provided in statements number 3 and number 4.

The LINEAR statement in line 5 changes the arm movement back to an
arc-type of movement.

The ZONE statement (line 6) changes the amount of settle distance for a
point to one that is less precise. The ZONE command then defaults to
the switch settings after the END statement is reached.

The PAYLOAD statement (line 7) changes the arm speed to a slow speed to
allow moving a heavy object. After the END statement, the speed returns
to the setting in the controller.

4-16 58X7338

ComMand

CSTATUS
GUARDI
MSTATUS
NOGUARD
TESTI
WAITI
WHERE
WRITE0

Description

Controller enabled status
Guards motion (uses DI port)
Move completion status
Stops the guard feature
Tests DI point
Waits for DI point switch
Updates a point definition
Opens or closes a DO relay

SENSOR Commands

Sensor commands allow you to control the manipulator and the devices
attached to it. The sensor commands are listed below.

CSTATUS Command

CSTATUS(counter_name);

This command allows you to determine if the controller is able to
initiate data transfer in an AML/Entry program. It is also used to
monitor communicationsistem status.

The value returned is placed into a counter. Counters are run-time
variables which can hold an integer or real value. Counters are
discussed in "Variables" on page 4-38.

The value returned in a counter when a CSTATUS command is accomplished
represents the state of the communication line, as outlined below.

15 = controller enabled to communicate
Not 15 = controller not enabled to communicate

The below listed conditions must be present before a 15 is returned.

• Host Connection (DSR) Active

• Communications Cable Connected

• Controller On-Line

• Controller In Xon'ed State

An example of CSTATUS is outlined below in a program fragment.

•
TOP: CSTATUS(X);

TESTC(X,15, GOOD1);
WAITI(OP_OK,1,0);
GOOD1: GOOD;
BRANCH (TOP);
END;

-- READ STATUS
-- IS THE CONTROLLER
-- ABLE TO COMMUNICATE?
-- CONTINUE PROGRAM

Chapter 4. Learning the AML/Entry Language 4-17

Note: This is the command form of CSTATUS. With the command
form of CSTATUS, a counter_name must be given. CSTATUS may also
be used as an arithmetic function within expressions. In the
latter form, no counter_name is given. The above example could
also be coded as:

TOP: TESTC(CSTATUS0,15,GOOD1); --IS THE CONTROLLER
WAITI(OPDX,1,0); --ABLE TO COMMUNICATE
GOODI: GOOD; --CONTINUE PROGRAM
BRANCH(TOP);
END;

See "Built-in Arithmetic Functions" on page 4-50 for more on arithmetic
functions.

GUARD' Command

GUARDI(digital_input_point,value);

This command allows you to use a DI port to guard motion. It interrupts
a motion, based on external input, .

As a movement occurs, tie controller monitors the port value. If the DI
point attains the speLilledvalue, motion is halted. The manipulator
does not stop program execution, but regards the move as completed.
Then, unless the GUARDI is ended with a NOGUARD, subseqUent moves will
not start.

Both digital_input_point, and value can consist of integers, counters or
formal parameters. The value of a counter for the digital_input_point
should be an integer ranging fram_i_z:to the maximum number of installed .

digital inputs. A zero for value is considered "off" or "inactive". A
non-zero value isEFITEM41a-4 6e-Z7iiaaiiii".

Only one DI point may be used as the motion guard at any one time. .

Whenever the GUARD' command is encountered, monitoring is changed to the
newl -s e fied o' t. If a previous value was in effect, it is lost.
However, the contr ller does not lose the guard condition when it is
changed by a subroutine. For example, if GUARDI is set to a particular
DI point and value, and a subroutine that changes the guard condition is
called., the new condition is used for monitoring while the subroutine
remains active. When the subroutine ends, and control is returned to
the caller, the controller automatically restores the caller's guard
condition.

The distance that the manipulator moves after motion is interrupted is
proportional to the manipulator speed. At payloads 11 through 19, a
different GUARD' monitoring scheme and deceleration ramp is used (as
well as lower speeds), thus allowing shorter stopping distances.

Note: If a move is stopped by a DI point; the system
automatically updates the internal location variables so that a
DPMOVE executed immediately after a DI guarded motion acts as
expected (moves a delta amount from where the arm came to rest).

4-18 58X7338

MSTATUS Command

MSTATUS(counter_name);

This command allows you to determine the completion status of the last
executed move. It specifies the counter into which the status is
17676Aa7--- ;;;Iers are run-time variables which can hold an integer or
real value. Counters are discussed in "Variables" on page 4-38.

Status codes are listed below.

0 = motion completed normally
1 = motion terminated by a guard
2 = motion not started due to a guard

After loading the code into a counter, the program may use either TESTC
or COMPC to test the value.

An example of a guarded move is outlined below in a program fragment.

STAT: STATIC COUNTER;
DI: STATIC COUNTER;
PT1:NEW PT(0,500,0,0);
PT2:NEW PT(0,400,0,0);
PT3: NEW PT(0,0,0,0);

TESTG: SUBR;
SETC(DI,3);
GUARDI(DI,1);
PMOVE(PT1);
PMOVEI(PT2);
MSTATUS(STAT);
TESTC(STAT,O,GOOD);
WHERE(PT3);
WRITEO(ERROR,1);
WAITI(OP_OK,1,0);
PMOVE(PT2);

GOOD: ZMOVE(-100);
ZMOVE(0);
END;

-- SET THE POINT GUARD TO 3
-- GUARD POINT 3 FOR A 1 CONDITION
-- MAKE A MOVE

-- DETERMINE THE COMPLETION STATUS
-- MOTION TERMINATED BY GUARD?
-- UPDATE POINT
-- INFORM OPERATOR
-- WAIT FOR OK
-- FINISH MOVE
-- YES, CONTINUE THE PROGRAM

Note: This is the command form of MSTATUS. With the command
form of MSTATUS, a counter_name must be given. MSTATUS may also
be used as an arithmetic function within expressions. In the
latter form, no counter_name is given.

In fact, the arithmetic function form is even more efficient then the
counter form of MSTATUS. In the above example, the declaration for STAT'
on line 1, the MSTATUS command, and the TESTC command could-be replaced
by the single line:

TESTC(MSTATUS0,0,GOOD);

See "Built-in Arithmetic Functions" on page 4-50 for more on arithmetic
functions.

Chapter 4. Learning the AML/Entry Language 4-19

NOGUARD Command

NOGUARD;

This command allows you to stop monitoring the input point currently
specified by GUARDI.

TESTI Command

TESTI(digital_input_point,value,label);

The TESTI command checks the specified DI port for a specified value. If
the values are the same a FflrTttPtr—rr"Made to a label in the same

This command is described in greater
OW-OF-CO TROL Commands" on page 4-23.

WAITI Command

WAITI(digital_input_port,value,time_limit [,label]);

This command allows you to respond to device time-out, rather than have
the controller generate an OT (overtime)' error. It is designed to
optimize throughput in an application that employs devices with
time-limited behavior (such as grippers and feeders).

If the port does not attain the upcified ulaw,within the time_limit,
control b ;; , es to the s ecified label. If the time limit does not
expire, control fa s i rough eiggioarim uction is exec . The label
field is optional. If the label field is omitte, an OT will occur if
the specified port does not achieve the value within 11e —rtnitr-tiirre7"

The digital_input_port, value, and time_limit can be integer constants,
counters, or formal parameters. The digital_input_point should be an
integer ranging from 1 to the maximum number of installed digital
inputs. A value of zero is treated as "off" or "inactive", a non-zero
value is treated as "on" or "active". The should range from
0 through 25.5. A time_limit of 0 makes the controller wait "forever"
for tETEFUlgitia'l_input_point to attain the specified value.

Examples:

WAITI(5,1,10); --Wait 10 seconds for DI 5 to turn on.
--If it does not turn on, then OT error.

WAITI(7,0,5,STILL_ON); --Wait 5 seconds for DI 7 to turn off.
--If it does not turn on, branch to STILL_ON.

WAITI(7,0,0); --Wait forever for DI 7 to turn off.

4-20 58X7338

WHERE Command

WHERE(point);

This command allows you to update a point definition, based on the
current position of the arm. The point must not be a fOrmal parameter.
It can be used to update the position after a move is stopped by a
motion guard. Format of the command is outlined below.

G: STATIC GROUP (PT(0,0,0,0));
WHERE(G(1));

H: NEW PT(0,0,0,0);
WHERE(H);

After performing the WHERE command, the value of one of the coordinates
of the current manipulator location may be extracted using the FROMPT
arithmetic function. See "Built-in Arithmetic Functions" on page 4-50
for more on arithmetic functions.

WRITEO Command

WRITEO(DO,value);

The WRITEO command instructs the controller to open or close a digital
output point relay. Both DO and value' can consist of integers,
counters, or formal parameters. The DO should be an integer ranging
from 1 to the maximum number of installed digital outputs. jyallagsal._
2m5Lialtens—th4—relay and a non-zero value closes it. The relay stays in
the open or closed position until another WRITEO command changes it.

Using Sensor Statements

In the following example, the WAITI and WRITEO are incorporated into one
of the earlier programs. The WAITI determines when a part is available
for pickup and the WRITEO indicates to the operator that a part has been
moved.

Chapter 4. Learning the AML/Entry Language 4-21

******************************* ***********************
--BEGINNING SUBROUTINE

-150,120));
--WAIT 15 SEC. FOR DI 6
--TO CLOSE

1 MAIN:SUBR;
2 PMOVE(PT(300,400,
3 WAITI(6,1,15);
4 ZMOVE(-250);
5 GRASP;
6 DELAY(1.0);
7 ZMOVE(-150);
8 WRITEO(7,1);
9 DPMOVE(<10,-5,-10,-20>);

10 ZMOVE(-250);
11 RELEASE;
12 DELAY(1.0);
13 ZMOVE(0);
14 WRITEO(7,0);
15 END;
16

--CLOSE DO 7

--OPEN DO 7
--END OF PROGRAM

**

In this example, the arm moves to the first point (line 2) and the
controller waits (line 3) for the DI 6 to close before going to the next
instruction (line 4). If the part, in this example, is not present
within the 15-second period, program execution stops and the control
panel overtime (OT) LED lights.

Once a part is picked up (line 7), the controller signals through the
closing of DO 7 (line 8). The DO point 7 remains on until line 14 of the
program, when the controller opens the relay for DO 7.

4-22 58X7338

Command Description

BRANCH
BREAKPOINT
COMPC
ITERATE
TESTC
TESTI
TESTP

Transfers control
Predetermined stop in program
Compares counters
Repeats execution
Tests counter
Tests DI point
Tests current part counter

FLOW-OF-CONTROL Commands

Flow-of-control commands are used to change the order in which program
statements are executed. By using them correctly, you can execute
different parts of your program for different reasons. Only four
flow-of-control commands will be discussed at this point. The remaining
commands will be covered in later sections. TESTC and COMPC are covered
under Counter Commands because they test counters and expressions.
TESTP is covered under Palletizing Commands and ITERATE is covered under
Subroutines and Aggregate Constants.

Labels

In some of the statements for flow-of-control, labels are part of the
statement. A label is a name used to locate a line. In a program, a
label is used when you want execution to transfer from one part of a
subroutine to another line within a subroutine. It is like putting an
address in one statement and a matching address at the line desired.
(More details on subroutines are in a later section titled "Subroutines"
on page 4-60). Labels have the following format and characteristics:

• Up to 72 characters.

• First character must be alphabetic.

• Remaining characters must be alphabetiC, numeric, or underscore (_).

• An underscore can not be the last character.

• Special characters, such as an asterisk (k), are not permitted.

An example of a valid label is outlined below.

STATION1:executable statement;

An invalid usage is:

1STATION:executable statement;

• • is a o•erator that always follows a label.
Labels are permitted on lines with or wit ou an • ;$ e s a emen
after the colon (:).

Chapter 4. Learning the AML/Entry Language 4-23

BRANCH Command

BRANCH(label);

The BR:. comman• . sfers • to the line in the subroutine
containing the matching label. The BRANCH instruction allows skipping
of lines of the program while staying in the subroutine that contains
the BRANCH. The target label of the BRANCH must 'e same
subroutine, and can be before or after the ine with the BRANCH
mtmtement.

BREAKPOINT Command

BREAKPOINT;

The BREAKPOINT is a Special flow-of-control type of command that allows
the control panel 24.1412L to sto he program at a predetermined
location using the Stop em key on the control panel. The
controller remembers' the next statement to be executed after the
BREAKPOINT command even when power is removed. The operator can
power-up the system at a later time and use the Recall Memory key to
bring the next statement into the processor for execution. The
statement is executed when the Start Cycle key is pressed. For detailed
instructions on host to restart the system, please refer to
Chapter 7, "Operating the Manufacturing System" in this manual.

Special things to consider for this command are listed below.

• Down or Grasp conditions are not retained during the power down and
future power up. For example, if the gripper is closed before the
power down, it is opened at power up.

• DO states are not retained during BREAKPOINT if Manip Power is
turned off. All DO's become open.

• If you execute the BREAKPOINT command without removing Manip Power
you can restart execution at the place it was stopped. However, if
Manip Power is turned off the manipulator must be returned to the
Home position befOre execution can resume.

I TERATE Statement

ITERATE('command',operand 1,....operand n);
ITERATE('subroutinel,operand 1,....operand n);

The ITERATE statement'r a subroutine 	a command using the values
provided in an aggregate. (See e al s in the "Aggregate Constants" on
page 4-35 and "Subroutines" on page 4-60).

The command or subroutine names must be enclosed in single quotes (').

4-24 58X7338

TESTI Command• TESTI(DI,value,label);

The TESTI command checks a digital point for a true condition (specified
by the value in t e sta men . The Dr and the value can consist of
integers, counters, or formal parameters. The DI should be an integer
ranging from 1 to the number of installed digital inputs.

If the condition is true, control is transferred to the line containing
the specified label. If the value in the statement is a 0, the transfer
occurs if the controller detects an open switch at the DI point. If it
has a non-zero value, the transfer occurs if the controller detects a
closed switch at the DI point.

The testing for a true condition at a DI point is a momentary test. The
controller does not wait for the condition to become true. If slals2--
condition is detected, the program executes the program statement that
follows the TEST.I..--,statement and no transfer to a label occurs. The
matching label must be in the same subroutine as the TESTI and can be
either before or after the TESTI statement.

By using expressions, it is possible to test for any combination of
digital inputs. For example, rather than using two TESTI commands to
test for inputs 1 and 2 being active, it is possible to use a single
COMPC command. See the discussion of the TESTI function in "Built-in
Arithmetic Functions" on page 4-50 and "Treating DI As Integers" on
page 4-56 for examples of this and a more general solution to this
problem.

Note: This is the command form of TESTI. With the command form
of TESTI, the three parameters must be given. TESTI may also be
used as an arithmetic function within expressions. In the latter
form, only the DI is given. See "Built-in Arithmetic Functions"
on page 4-50 for more on using TESTI as an arithmetic function.

Chapter 4. Learning the AML/Entry Language 4-25

Using Flow-of-Control Commands

The next example has incorporated into the previous developed program
the following Flow-of+Control Commands:

• BRANCH
• BREAKPOINT
• TESTI

The function of the BRANCH in this program is to avoid program
statements unless they are needed. The BREAKPOINT provides a location to
stop the program without having to go to the END statement. This might
be useful, for example, if the operator must leave the plant floor
temporarily. The TESTI provides testing for conditions, such as an
empty feeder.

 -,-,-,..,--,-,-**
1 MAIN:SUBR; --BEGINNING SUBROUTINE
2 LEVEL:NEW -50; --A LOCAL CONSTANT
3 PMOVE(PT(300,400,-150,120));
4 TESTI(6,0,FEEDER2); --TEST FEEDER 1
5 BREAKPOINT;
6 ZMOVE(LEVEL*5);
7 GRASP;
8 DELAY(1.0);
9 ZMOVE(3*LEVEL);

10 BRANCH(BYPASS);
11 FEEDER2:PMOVE(PT(
12 ZMOVE(5*LEVEL);
13 GRASP;
14 DELAY(1.0);
15 ZMOVE(LEVEL*0);
16 BYPASS:DPMOVE(<10,-5
17 ZMOVE(4*LEVEL);
18 RELEASE;
19 DELAY(1.0);
20 ZMOVE(LEVEL*0);
21 END;
22

--MOVE TO "LEVEL" 5 (-250)

--MOVE TO "LEVEL" 3 (-150)
--PASS IF FEEDER1 OK

-300,400,-50,120));
--MOVE TO "LEVEL" 5 (-250)

--MOVE TO "LEVEL" 0 (0)
,0,-20>);

--MOVE TO "LEVEL" 4 (-200)

--MOVE TO "LEVEL" 0 (0)
--END OF PROGRAM

**

In this example, the arm moves to the first point (line 3); the
controller then tests (line 4) for the DI 6 open (no part). If no part
is present the program branches to the line with the label FEEDER2
located at line 11 and the application continues. If the test (line 4)
shows that a part is present, line 5 of the program is executed.

The BREAKPOINT statement (line 5) allows the operator to stop the
program after the arm executes the test for a part at the first part
location. This is done by pressing the Stop and Mem key on the control
panel. The controller can be powered down completely up to 80 days, and
the application continues at line 6 of the program when the Recall
Memory key is pressed, •

4-26 58X7338

• The BRANCH statement (line 10) is used when FEEDER2 statements are not
needed. When the program executes line 10, a branch to line 16 is
executed. Line 16 has the matching label to line 10.

•
Chapter 4. Learning the AML/Entry Language 4-27

TECHNIQUES TO SIMPLIFY PROGRAMMING

The following sections contain information on certain techniques that
can make programs more readable, and therefore easier to understand.
Subjects discussed in this section include:

• Use of multiple statements on a line

• Definition of a declaration

• Declaration of Constants

1. Global Constants

2. Local Constants

3. Aggregate Constants

• Declaration of Variables

— Counters

— Groups

• Expressions

• Built-in Arithmetic Functions

•
4-28 58X7338

MULTIPLE STATEMENTS ON A LINE

The next example shows how the previous program can be put in a form
where multiple statements are on the same line. This compressed form
may be necessary for longer programs. If your Personal Computer has
192K memory, your program must be less than 500 lines long. If your
Personal Computer has 256K memory, then your program must be less than
800 lines long.

Note: Each statement ends with a semicolon. This method of
coding is a more efficient use of storage space on each diskette
for the IBM Personal Computer and allows more program statements
in the editor. Multiple statements on a line have no effect on
the way the program is stored or used by the controller.

**
1 MAIN:SUBR; --BEGINNING SUBROUTINE
2 PMOVE(PT(300,400,-100,120));
3 TESTI(6,0,FEEDER2); --TEST FEEDER 1
4 BREAKPOINT;
5 ZMOVE(-250);GRASP;DELAY(1.0);ZMOVE(0);
6 BRANCH(BYPASS); --PASS IF FEEDER1 OK
7 FEEDER2:PMOVE(PT(-300,400,-50,120));
8 ZMOVE(-250);GRASP;DELAY(1.0);ZMOVE(0);
9 BYPASS:DPMOVE(<10,-5,0,-20>);

10 ZMOVE(-200);RELEASE;DELAY(1.0);ZMOVE(0);
11 END; --END OF PROGRAM
12

**

Lines 5, 8, and 10 have multiple statements which have reduced the
number of lines in the editor.

Chapter 4. Learning the AML/Entry Language 4-29

DECLARATIONS

When you assign a name as a substitute for the actual value, you are
making a declaration. When the program encounters the name, the value
for the name is used.

Using Declarations

Using declarations in your program makes programming less complicated
because it is easier to remember a name than a series of numbers. Once
you define the name to be equal to a number, the compiler uses the
correct number each time the name is found in the program..

The AML/Entry keyword you use in your declaration statement informs the
compiler what type of term is being declared. The types of terms
AML/Entry accepts are:

• onstants, which retain their starting value. They may be one of the
ollowing ypes:

- Numbers, either integers (no decimal points) or real (decimal
points

- 41,111S, which are the coordinates of a location in the arm work
space.

- ,Character strings.

- Aggregates- which are a collection of like numbers, points, or
character strings.

• Variables, which change value when program statements modify them.

• Com•lex structures such as Pallets and Regions. Pallets and Regions
descri•e to t e c•ntro er the location o e structures within the
work space.

Declarations serve two important purposes:

• Reserve storage for a variable, which can later be used in
expressions.

• Provide names for later reference.

• Describe Pallets and Regions.

4-30 58)(7338

CONSTANTS

In AML/Entry, constants can be numbers, points, character strings, or
aggregates.

Declaring Constants

Constant declaration statements have the following forms:

name:NEW n;
name:NEW PT(x,y,z,r);
name:NEW 'string';
name:NEW <aggregate›;

The name in the declaration has the following format and
characteristics:

Up to 72 characters

First character must be alphabetic

• Remaining characters must be alphabetic, numeric, or underscore (_.)

• An underscore can not be the last character

• Special characters, such as an asterisk (k), are not permitted

The term NEW is a keyword used by the AML/Entry program to identify a
constantfTgrname and the NEW keyword are separated by the colon (:), a

' 4417.7711.on operator.

If you are declaring a point, the term PT follows the keyword NEW. A
blank space must separate the two tellarr mroints contain the X, Y, and
Z-axes coordinates in the work space, and rotation of the R-axis in
degrees. Commas (,) separate each coordinate and the roll value. The
values of the coordinateg and roll are enclosed in parentheses.

The semicolon (;) delimiter indicates that the information for the
statement is conFeTW.

Three types of declarations are shown below:

TIME:NEW 8; -- Declares a number
POINT:NEW PT(650,0,-50,0); -- Declares a point
LOOP:NEW 'Al'; -- Declares a string

In the first example, the constant is a number with the value 8 and the
name TIME. In an application program, the name has meaning when a DELAY
statement is used. The statement includes TIME within parentheses after
the command to delay.

DELAY(TIME); is the same as DELAY(8);

Chapter 4. Learning the AML/Entry Language 4-31

The name POINT, in the second example, can be the parameter for a move
command. When the program executes, the values 650,0,-50,0 are
substituted for the name POINT. The number 650 is a cartesian
coordinate value on the X-axis. The number 0 after the comma separator
is a cartesian coordinate value on the Y-axis. The number -50 is a
cartesian coordinate value on the Z-axis. The cartesian coordinates are
in millimeters unless you configure your system to use inches. The last
0 is the angle of the roll axis in degrees. The angle of the roll axis
is based on the starting angle when the arm is at its home position.

Note: Expressions are not allowed within declarations.
Express e only allowed inside some of the AML/Entry
commands. See "Commands That Allow Expressions" on page 4-54 for
a discussion of where expressions are allowed.

Local Constants

Local constants are constants declared in a specific subroutine for use
TrirtrinTiiirnnTEsubroutine only. To make a local constant declaration,
you must lace the constant declaration after the ,ds ..fallon of the
subroutine to which it belongs.

Global Constants

A name declared in a global declaration can be referenced in any
statement in your program. To make a name a global declaration, you must
place the constant declaration statement before the outmpst subroutine
statement.

Global vs. Local Constants

AML/Entry uses both local and global constants. The difference between
the two is where they can be used in the program. Global constants can
be used anywhere in the program; local constants can only be used within
the subroutine where they are declared. It is possible to write a
program with only global constants. However, using local constants
correctly in your program can make it much easier to read and
understand. The important thing to remember is that a constant declared
globally can be used anywhere in the program, while a constant declared
in a subroutine can only be used in that subroutine.

Using Constants

The following programs show usage of global and local constant
declarations.

4-32 58X7338

Using Local Constants

This example performs the same movements for two different ZONE command
values. Since the movement of the arm is repeated a subroutine has been
created with local point declarations. The program uses nested
subroutines which are explained later in the chapter, however they are
used in the example to help you understand the concept of local
variables. With the point constants declared in the subroutine
responsible for movement there is an added organization to the program
making it easier to understand.

1 ZONEVALLNEW 4; --GLOBAL DECLARATIONS
2 ZONEVAL2:NEW 6;
3 PAY VAL:NEW 7;
4 MAIR:S UBR; --MAIN SUBROUTINE
5
6 TRANSPORT:SUBR; --MOVEMENT SUBROUTINE
7 MOVEl:NEW PT(300,-300,-100,0); --LOCAL DECLARATION
8 MOVE2:NEW PT(300,300,0,180); --LOCAL DECLARATION
9 PMOVE(MOVE1);

10 ZMOVE(-250);
11 GRASP;
12 DELAY(2.0);
13 ZMOVE(0);
14 PMOVE(MOVE2);
15 ZMOVE(-150);
16 RELEASE;
17 END;
18
19 ZONE(ZONEVAL1);
20 PAYLOAD(PAY_VAL); --ANY ADDITIONAL MOVEMENTS MUST BE MADE
21 TRANSPORT; --SEPARATELY BECAUSE TRANSPORT CALLS ITS
22 ZONE(ZONEVAL2); --OWN VALUES
23 TRANSPORT;
24 END;
 **

The declared names in this program are:

• ZONEVAL1 - A global constant with value 4

• ZONEVAL2 - A global constant with value 6

• PAY VAL - A global constant with value 7

• MOVE1 - A local constant of the subroutine TRANSPORT. It is a point
with values of X=300, Y=-300, Z=-100, and R=0. It can only be used
by the subroutine TRANSPORT.

• MOVE2 - A local constant of the subroutine TRANSPORT. It is a point
with values of X=300, Y=300, Z=0, and R=180. It can only be used by
the subroutine TRANSPORT.

Chapter 4. Learning the AML/Entry Language 4-33

Using Global Constants

The following program is an earlier example that has been updated to use
global declarations.

**
1 SLOW:NEW 1; --LINES 1-7 ARE ALL
2 POINT1:NEW PT(300,400,-100,0); --GLOBAL DECLARATIONS
3 POINT2:NEW PT(350,400,-50,0);
4 POINT3:NEW PT(400,350,0,0);
5 OFF:NEW 0;
6 LOOSE:NEW 15;
7 STRAIGHT:NEW 1;
8
9 MAIN:SUBR; --BEGINNING SUBROUTINE

10 PMOVE(POINT1);
11 LINEAR(STRA1GHT);
12 PMOVE(POINT);
13 LINEAR(OFF); --EXIT STRAIGHT
14 ZONE(LOOSE);
15 PAYLOAD(SLOW);
16 PMOVE(POINT5);
17 PAYLOAD(OFF); --DEFAULT TO SWITCHES
18 ZONE(OFF); --DEFAULT TO SWITCHES
19 END; --END OF PROGRAM
20

	".***

The declared names for global constants in the program are:

• SLOW - This name has a value of 1.

• POINT' —This is the point with coordinates of X=300, Y=400, Z=-100,
and roll of 0.

• POINT2 - This is the point with coordinates of X=350, Y=400, Z=-50,
and roll of 0.

• POINT3 - This is the point with coordinates of X=400, Y=350, Z=0,
and roll of 0.

• OFF - This is used any time a 0 is wanted to end a mode or to
default to the controller switches.

• LOOSE - This name, changes the ZONE value.

• STRAIGHT - This name sets the LINEAR command for slow straight mode
when used in that type of statement.

These constants are global because they are declared before the outer
subroutine in the program (line 9). They can be accessed anywhere in the
program.

4-34 58X7338

• Aggregate Constants

Another technique for declaring constants is the aggregate declaration
statement. This method allows you to declare a number of parameters
with one declaration statement. The statement has the following form:

name:NEW <aggregate>•

Aggregates are enclosed in gie_hEackets. The parameters that make up
the aggregate are separated by commas, and must be of the same data ty e
(numbers, points, strings). Some examp es e ec aration are:

PORTS:NEW <3,4,5>;

POINTS:NEW <POINT1,POINT2>;

Note that the aggregate PORTS contains only numbers, and the aggregate
POINTS contains two declared points. Each point must be declared prior
to the POINTS declaration statement. <—

Example:

POINT1:NEW PT(300,400,-100,180);
POINT2:NEW PT(400,300,-50,0);

These declarations must precede the aggregate declaration.

Aggregates are not allowed to contain expressions. Expressions are only
allowed wift1M-1MrrMrbr—*Mr7E7try commands. See "Commands That Allow
Expressions" on page 4-54 for a list of where expressions may be used.

Using the ITERATE Command with aggregates

The ITERATE command is a Flow-of-Control command. It repeats a
subroutine or a command using the values provided in an aggregate. An
aggregate is a listing of like parameters. The parameters in the
aggregate are used for values in the subroutine or command, starting
with the parameter in the leftmost position, moving towards the
parameter at the rightmost pose

Note: When executing an ITERATE command it is not possible to
exit from the command until all elements in the aggregate have
been used.

The format of the ITERATE command is outlined below.

ITERATE('command',<aggregate>,...);
ITERATE('subroutine',<aggregate>,...);

Use of ITERATE commands for subroutines is explained under the section
on subroutines.

Chapter 4. Learning the AML/Entry Language 4-35

Note: The symbol used for the single quote on the Personal
Computer appears as ' on the keyboard.

An example of repeating a command is outlined below.

PT1:NEW PT(500,400,0,180);
PT2:NEW PT(450,450,-100,90);
POINTS:NEW <PT1,PT2>;

OUTER:SUBR;
ITERATE('PMOVE',POINTS);

END;

In the example, the PMOVE command is exec ted twice. Each time the PMOVE
is executed, it uses a new point. The locations for the moves are PT1
and PT2. Using the ITERATE command will perform exactly as if the
following two command were used instead:

PMOVE(PT1);
PMOVE(PT2);

The next example uses the declaration for a WRITEO to DO points 3, 4,
and 5, which are named as ports. The ITERATE statement eliminates the
need to write separate statements to repeat the action.

PORTS:NEW <3,4,5>;
OUTER:SUBR;

ITERATE('WRITE0',PORTS,1);

During the execution of the program it appears as if a WRITEO statement
has been written for every value in the aggregate. Each WRITEO
statement uses a value from the aggregate for the PORT number, and the
number one as the other parameter. Each value in the aggregate is used
in the order it is written, and each value is only used once.

In the compiler the command that is used in the ITERATE statement is
repeated for every element of the aggregate. This takes up additional
space within the controller. To get the most efficient use of controller
space, you should perform the desired action using a subroutine with
formal parameters, which is discussed in the section titled "Using
Subroutines with Parameters" on page 4-68.

In the example it would have been possible to use another aggregate to
represent the "value" parameter at the same time. If you have an ITERATE
statement executing a command or subroutine with more.than one aggregate
as a parameter, you must make sure that all aggregates have rthe same
number of values in them, and since all values are only used once, your
values must-6e aligned in the aggregates in the order you want them used
as parameters.

4-36 58X7338

• Note: The ITERATE command does not allow expressions as
arguments. The DELAY, SETC, -",TSTC7-2ffel—ZrOVE—L llow
expressions as arguments (see "Commands That Allow Expressions" on
page 4-54), but expressions are not allowed to appear as arguments
when the command appears within an ITERATE command.

Chapter 4. Learning the AML/Entry Language 4-37

VARIABLES

Variables change values during your program as AML/Entry statements
modify the present values. The controller only retains the new value.

The variable structures discussed in this section are:

• Counters

• Groups

The special uses in AML/Entry that variables have for pallets will be
discussed briefly in this section. More details on pallets will be
covered in the section titled "Pallet" on page 4-74.

Declaring Variables

The following keywords are used when declaring variables:

Keyword

STATIC

COUNTER

Description

Identifies variable name
for counter, pallet,
region, and group
Defines counter name

You declare variables using the STATIC keyword in the following form:

name:STATIC COUNTER;

The name has the following format and characteristics:

• Up to 72 characters

• First character must be alphabetic

• Remaining characters must be alphabetic, numeric, or underscore (_)

• An underscore can not be the last character

Special characters, such as an asterisk (*), are not permitted.

The term STATIC identifies that the name is intended for a variable. It
also implies that a variable has no initial value, but a variable keeps
any value assigned to it even across power down conditions.

4-38 58X7338

Counters

Counters may be used to hold either an integer or real value. Their use
allows the program to maintain an irifFrirErdesCiiiirrMtrgrthe actual
external process. For example, rather than performing an operation a
fixed number of times, it is possible to produce a specified number of
parts by counting non-reject assemblies. These counters static
entities. This means that their value is not ost
situation or from run to run of the application. Thus, a counter can be
us • re .:1 jor weekly pr sob ion. Refer to "COUNTER" on
page A-20 to find out how to reset counters.

Counters may be used to specify parameters for other commands. For
example, the below outlined command is legal.

WRITEO(counter_name,l); counter_name specifies the port

In fact, counters may be used within expressions (see "Expressions" on
page 4-48), inside PT declarations, or passed as actual parameters to a
subroutine. In general, a counter can be used wherever a formal
parameter can be used (See "Formal Parameters") or within an expression.

Round-Off Error

Counters hold either an integer or real value. Whether they hold an
integer or real value depends on how they are assigned, but all integers
are stored in real number format in the controller. As long as counters
are assigned integer values or integer expressions, the value will be
stored in memory accurately. As soon as a real value or real expression
is stored in a counter, the counter is subject to small round-off
errors. The amount of the round-off error depends on the real
expression. Generally it is less than 0.00001. This round-off error is
common to all binary computers, and cannot be avoided. In most cases,
the round-off error may be ignored entirely.

However the round-off error may play a role when used with the COMPC or
TESTC command. For example, suppose the counter A contains the value
10.5, and the value of the counter B contains the result of the
expression (10.5/1234.56)*(12.3456/0.01). Because B contains a value
that is the result of a real expression, it may be subject to a
round-off error. It would be fallacious for a program to use COMPC or
TESTC to compare A and B for equality. Because B may be off slightly,
this would affect the result of a comparison to A. Rather than taking
the equal course of action (as it should because the result of the
expression that determines B reduces to 10.5), the controller would take
the not equal course of action. Instead, one should test to see if A
and B are sufficiently close to each other that they can be considered
equal. For example, rather than:

COMPC(A=B,EQUAL);

One would use:

COMPC(ABS(A-B) <= 0.001,EQUAL);

Chapter 4. Learning the AML/Entry Language 4-39

The latter example will branch to the label EQUAL if A and B are within
0.001 of each other.

This is not a problem when integer counters and expressions are used.
As long as division, the SQRT, and trigonometric functions (see
"Built-in Arithmetic Functions" on page 4-50) are not used, the result
will remain an integer.

4-40 58X7338

•
COUNTER Commands

A counter is declared using the keyword STATIC. There are five verbs
exclusively available for use with counters.

Command

COMPC
DECR
INCR
SETC
TESTC

Description

Compares Counters
Decrements counter by 1
Increments Counter By 1
Sets Counter
Tests Counter

DECR Command

DECR(name)

The DECR statement decreases the counter by 1 each time the statement is
executed.

INCR Command

INCR(name)

The INCR statement increases the counter by 1 each time the statement is
executed.

SETC Command

SETC(name,value)

The SETC statement sets the "named" counter to the "value" each time the
statement is executed. The value can consist of ainzjagconstant or a
Will112.1L-2,2(41.LEAS1011. By using the SETC statement to assign an expression
to a counter, and by then using the counter in a PT or an aggregate, it
is possible to solve many difficult applications. See "Expressions" on
page 4-48 for more on expressions.

Chapter 4. Learning the AML/Entry Language 4-41

COMPC Command

COMPC(expl condition exp2,label);

To allow a greater degree of control over the execution path, this
command provides the ability to compare two expressions. The
expressions can consist of_simat_grazstants sin le c or even
complex expressions. If the condition is met, t e statement branches to
the specified label.

The COMPC command supports two sets of relational operators. Allowable
conditions are listed below. Enter exactly as shown.

LT or < less than
LE or <= less than or equal to
GT or > greater than
GE or >= greater than or equal to
EQ or = equal to
NE or <> not equal to

Notes:

1. Do not enter '=<' for '<=', '= ' for l >=', or >< for <> as the order
is important.

2. For the compiler to be able to discern the alphabetic operators from
their surrounding expressions, those operators must be surrounded by
at least one blank on each side. The following statements are
identical:

COMPC(CTR EQ O,CONTINUE);
COMPC(CTR=0,CONTINUE);

As shown below in a program fragment, the subroutine DO_SOMETHING is
executed twice. The third time through the loop C is greater than 2 and
the program branches to the end of the program.

C:STATIC COUNTER;
MAIN:SUBR;

SETC(C,1);
NEXT:COMPC(C>2,EN);

DO_SOMETHING;
SETC(C,C+1);
BRANCH(NEXT);

EN:
END;

Note: Be careful when using COMPC to compare two expressions
that contain real values. Binary computers generally have a small
round-off error associated with storing real numbers, which may
cause comparisons to fail in unexpected places. See "Round-Off
Error" on page 4-39 for more on this.

4-42 58X7338

TESTC Command

TESTC(name,value,label);

The TESTC command compares name with value in the statement. If a
true condition exists, program con axis rs to the statement that
has the same label as in the TESTC statement. If the condition is not
true, the statement that follows the 1.6ba; statement is executed. The
matching label must be in the same subroutine .as the TESTC, and can be
either becrifts^757 after in—TESTC-Initement. Both name and value can
consist of an expression. See "Expressions" on page 4-48 for more on
expressions.

Note: Be careful when using TESTC to compare two expressions
that contain real values. Binary computers generally have a small
round-off error associated with storing real numbers, which may
cause comparisons to fail in unexpected places. See "Round-Off
Error" on page 4-39 for more on this.

Using Counter Statements

CTR1 in the following example is a counter to track parts that are
built. Another counter, CTR2, keeps track of the decreasing inventory
used in the part.

COMMAND INPUT -->

1 CTR1:STATIC COUNTER; --PARTS BUILT
2 CTR2:STATIC COUNTER; --INVENTORY MATERIALS
3 START:SUBR;
4 SET:SUBR;
5 TESTI(16,0,NOCHANGE); -- IS DI 16 ON
6 SETC(CTR2,200); --SET COUNTER TO 200
7 NOCHANGE: --BYPASS RESET
8 END;
9 SET; --CALL SET SUBROUTINE FOR COUNTER

10 PMOVE(PT(300,400,-100,0));
11 ZMOVE(-250);GRASP;ZMOVE(0);
12 INCR(CTR1); --ADD 1 TO THE COUNTER
13 DECR(CTR2); --REDUCE INVENTORY
14 PMOVE(PT(400,300,-50,0));
15 ZMOVE(-175);RELEASE;ZMOVE(0);
16 TESTC(CTR2,0,STOP); --TESTS INVENTORY
17 BRANCH(PARTSAVAIL);
18 STOP:WRITE0(10,1);
19 PARTS _ AVAIL:
20
21 END;

Line 16 tests the inventory to determine if all the parts are gone. If
no parts exist, the program branches to STOP to signal an operator using
DO 10. Each time a starting inventory counter value is desired, DI 16
receives an input to set the counter to 200. The program skips line 6
of the program if line 5 does not receive a DI 16 signal with a value of
1.

Chapter 4. Learning the AML/Entry Language 4-43

PT's Defined in Terms of Formals and/or Counters

PT is a keyword that defines position and rotation of a point. As shown
below, a PT can be defined in terms of either a formal parameter or a
counter.

C: STATIC COUNTER;

S: SUBR(F);
P: NEW PT(F,C,0,0); -- X coordinate is a formal parameter

PMOVE(P); -- and Y coordinate is a counter
END;

Point P in the above example has an x coordinate that is defined by the
value of the formal parameter F and a y coordinate that is a counter.
The NEW PT is considered an executable statement in that it does
generate code to initialize the point when the subroutine is called.

Note: If this programming technique is used on a PT that is
global, the values are only updated when the cycle is started. If
the application program uses a branch loop, rather than allowing
the end-of-cycle to occur, the PT is not re-evaluated.

Note: If data drive is used to change the value of P via
communications, then the values of F and C remain unchanged. P is
a point whose fist two values come from F and C, but the values of
F and C do not depend on the vales of P.

4-44 58X7338

Group

To improve the efficiency of host data transfers and improve program
productivity, ire7-051561:51777Z7FEFULTral77.7ted data items to be
3Tgaa—Mrtribously in the controller's memor . This allows the host to
read or write m t is are single or group items.

GROUP is a keyword which must be defined as STATIC. A group consists of
either points or ng e-va ued variables (counters). A group must
consist of at least one element. If the group contains more than one
element, the elements must all be of the same type (a group of points or
a group o) m x •ata types, e compiler reports an
error. For example, a group of points is defined as outlined below.

FIXTURES: STATIC GROUP(PT1,PT2,...PTn);

Here, PTn is either the name of a defined PT or is a PT.

PLACE: NEW PT(200,300,-10,0);
FIXTURES: STATIC GROUP(PLACE,PT(0,0,0,0));

This statement allows all of the points to be considered as a group.
The group, however, is stored in a separate are of memory. Thus if data
drive is used to change the group, the point PLACE is not modified. In
order to change the value of PLACE in both the point and the group, then
data drive must be used on both the point and the group.

AML/Entry llows •roups of counters to be used. In this case, counters
are not assigned in•ivi•ua names wi he PT's) but must be
assigned an initial value as outlined below.

H: STATIC GROUP(2,2,23,0,5); -- five counters.

This statement
Initial values

H(1) = 2
H(2) = 2
H(3) = 23
H(4) = 0
H(5) = 5

defines a group of five counters with the group name H.
of the individual counters are listed below.

Examples of groups of counters are shown below.

SETC(H(3),H(3)/2);

SETC(INDEX_LH(INDEX_2));

ZMOVE(H(CTR));

--Divides third element of H by 2

--Use one index to set the other

--Uses counter named CTR
--to index the group

Note: A group or a particular group item can not be used in an
aggregate. A formal parameter can not be treated as a group.

Chapter 4. Learning the AML/Entry Language 4-45

Indexing

The elements of a group are accessed b indexing. The index can be a
nl---TeTT-71-TOirrinnur , parame er, or a counter. xamp es of indexing are

shown below.

1 POINT1:NEW PT(0,500,0,0); -- LOCATION OF FIXTURE 1
2 POINT2:NEW PT(0,600,0,0); -- LOCATION OF FIXTURE 2
3 POINT3:NEW PT(50,500,0,0); -- LOCATION OF FIXTURE 3
4 FIXTURES:STATIC GROUP (POINT1,POINT2,POINT3);
5 INDEX:STATIC COUNTER; -- THE INDEX INTO FIXTURES
6
7 MAIN:SUBR;
8 SETC(INDEX,1); -- START AT THE FIRST FIXTURE
9 TRY:PMOVE(FIXTURES(INDEX)); -- MOVE TO FIXTURE

10 INCR(INDEX); -- GO TO NEXT FIXTURE
11 TESTC(INDEX,4,EN); -- MOVED TO ALL 3 FIXTURES
12 BRANCH(TRY); -- IF NOT MOVE AGAIN
13 EN: -- THE REST OF THE PROGRAM
14 END;
 ****************************A-*************************

When an individual point or counter of a group is referenced, an index
must be given. The only time a group may be referenced without an index
is in the GET or PUT commands. For example, suppose a global group of 4
counters is used to declare a point, PT1. The following would have to
be used:

GR:STATIC GROUP(650,0,0,0);
PT1:NEW PT(GR(1),GR(2),GR(3),GR(4));

It is tempting to want to use GR without indices, but this will cause a
compiler error. Each time the program cycles back to the beginning of
the program, PT1 will get reassigned new values based on the current
values of GR.

4-46 58X7338

Using Groups with 7545-800S

As a second example of indexing into a group, suppose an application
using a 7545-800S manipulator defines many points. Rather than having
to place a LEFT or RIGHT command before every PMOVE, it is possible to
encode this information into two groups. Then one subroutine may decode
this information and perform the actual ?MOVE. Essentially, points will
contain an implicit LEFT or RIGHT command before motion to the point is
performed. This can be easily accomplished by using groups.

1 PT1:NEW PT(500,500,0,0);
2 PT2:NEW PT(-500,500,0,0);
3 PT3:NEW PT(.500,-500,0,0);
4 PT4:NEW PT(-500,-500,0,0);
5 POINTS:STATIC GROUP(PT1,172,P73,12T4);
6 INFO:STATIC GROUP(0,0,1,2); -- 0-CURRENT MODE, 1-LEFT
7 2-RIGHT
8 MAIN:SUBR;
9 F.' ISUBR(N);
10 TESTC(INFO(N),O,DOIT);
11 TESTC(INFO(N)„1,LE
12 RIGHT; BRANCH(DOIT);
13 LEFTMODE: LEFT;
14 DOIT: PMOVE(POINTD(N));
15 END;
16 PPMOVE(3);
17 PPMOVE(1);
18 PPMOVE(4);
19 PPMOVE(2);
20

************************k*****************************

By using the group INFO, it is possible to encode the configuration,
The MOVE subroutine takes one parameter, which indicates to which
point the manipulator will move. If INFO(N) contains a 0, then the
current configuration is used . . If INFO(N) contains a 1 then the
7545-800S is switched to LEFT mode before the move. Any other value in
INFO(N) means that the 7545-800S is switched to RIGHT mode before the
move. Thus only the declaration section of the program 'needs to be

properly entered. The user does not have to be concerned with arm
configurations throughout the program.

' 0

7 TEST FOR DON'T C
)--- TEST FOR LEFT

-- RIGHT nom THEN MOVE
-- LEFT MODE THEN MOVE

-- GO TO PT3 (IN LEFT MODS)
-- GO TO Ill (IN LEFT MOOS)

GO TO PT4 (IN RIGHT MODE)
-- GO TO PT2 (1N RIGHT MOCS)

END;

Chapter 4. Learning the .AN /Entry language 4-41

EXPRESSIONS

AML/Entry Version 4 allows arithmetic ex•ressions to appear in several
commands. An expres s a mathematical equation es to a
result. The result of the expression is then used in the command in
which it appears. In this chapter, expressions in AML/Entry are
discussed.

Expressions can consist of constants, counters, operators, formal
parameters (see section on "Subroutines" on page 4-60) and built-in
functions. If a formal parameter is used for the first time in an
expression, then the compiler assumes that the actual parameter piiggige
1!asounter .

Expressions in AML/E are identical to how they appear in other computer
languages (i.e. IBM Basic). To add two counters, A and B, and store the
result in a third counter C, one would use:

2711:SCANBIL_
The following could also be used:

SETC(C,((((A+B)))));
SETC(C,B+A);
SETC(C,A+(+B));

Subtracting, multiplying, or dividing two counters is equally easy, as
indicated below:

SETC(C,A-B);
SETC(C,A*B);
SETC(C,A/B);

Terms within parentheses are always evaluated before being used in the
rest of the expression. Addition and subtraction have the same
precedence, as do multiplication and division. But as in other
languages, multiplication and division take precedence over addition and
subtraction. Thus

SETC(C,10+5*2);

sets C to the value 20. Parentheses can be used to override the default
precedences. To perform the addition first, the following would be
used:

SETC(C,(10+5)*2);

causing C to be set to 30.

As an example, suppose one wanted to write a subroutine which performed
the factorial function. The factorial function is a function which
multiplies all the integers up to a given integer.

4-48 58X7338

For example,

3 factorial = 1 * 2 * 3
5 factorial = 1 * 2 * 3 * 4 * 5
1 factorial = 1

The following AML/E program performs this

RESULT: STATIC COUNTER; MAIN: SUBR;

FACTORIAL: SUBR(N);
SETC(RESULT,1);

LOOP:
COMPC(N < 2,DONE);
SETC(RESULT,RESULT*N);
SETC(N,N.4);
BRANCH(LOOP);

DONE:
END;

FACTORIAL(5);
FACTORIAL(14);
END;

--Performs N factorial, answer in RESULT
--Initialize RESULT

--Loop until N<2
--Multiply RESULT by N, N-1, N-2,...
-- until N=1

--End of FACTORIAL subroutine

--Computes 5 factorial
--Computes 10 factorial
--End of Program

Note that to decrement N in the above program, the expression N-1 is
used. The DECR function could also have been used. As another example,
suppose a group of counters is used to keep production counts of an
application, and one wanted to average these. The subroutine AVERAGE
performs this. The rest of the main program increments and decrements
the counters as needed, and when the average is needed, subroutine
AVERAGE is called.

PRODSTATS: STATIC GROUP(0,0,0,0,0,0,0,0,0,0);--Holds the prod. counts

AVG: STATIC COUNTER;
MAIN: SUBR;

AVERAGE: SUBR;
I: STATIC COUNTER;
SETC(I,1);
SETC(AVG0);

LOOP:
SETC(AVG,AVG+PRODSTATS(I));
SETC(I,I+1);
COMPC(I<11,LOOP);

SETC(AVG,AVG/10);
END;

--Holds the average of above

--Computes the average
--Points into PRODSTATS
--Start with the first value
--Clear average
--Loop until all 10 values
-- of PRODSTATS added
--Increment pointer

--Compute average from sum
--End of AVERAGE subr

Chapter 4. Learning the AML/Entry Language 4-49

The compiler makes no attempt to evaluate an expression at compile time.
Thus the user should attempt to reduce the expression as much as
possible beforehand. For example,

SETC(C,3*(A+10)-1);

should be reduced to

SETC(C,3*A+29);

Similarly, division by 0 is not caught at compiler time. Thus

SETC(C,C/(10-2*5));

will cause a data error (Arithmetic Error) in the controller at run
time.

Built- in Arithmetic Functions

Many built-in arithmetic functions are provided. These functions are
allowed to appear in expressions wherever a counter can appear. The
following functions are provided.

1. ABS(exp) - Will return the absolute value of the given expression.
The absolute value of a number is the number itself if the number is
positive, or -1 times the number if the number is negative (making
it positive). For example,

SETC(C,ABS(5.5)); --Sets C to 5.5
SETC(C,ABS(0)); --Sets C to 0
SETC(C,ABS(-5.2)); --Sets C to 5.2

2. ATAN(exp) - Will return the arctangent of exp in degrees. The
arctangent will be the principal value (i.e. from -90 to +90
degrees). For example,

SETC(C,ATAN(1)); --Sets C to 45 (i.e. TAN(45)=1)
SETC(C,ATAN(5/3)); --Sets C to the angle made by the X-Axis and

--the line segment from (0,0) through (3,5)

The arcsine and arccosine functions are not provided by AML/E.
However, one may use the following formulas to achieve the same
result:

ASIN(x) = ATAN(x/5ORT(1-x*x))
ACOS(x) = 90 - ATAN(x/SORT(1-x*x))

3 ATAN2(expl,exp2) - Will return the arctangent of expl/exp2 in
degrees. This has the advantage over ATAN(expl/exp2) in that the
actual angle will not get replaced with the principal angle. The
resultant value will be from -180 to 180 degrees. If both expl and
exp2 are 0, then a DE (52) will occur. The ATAN2 function returns
the angle made by the X-axis and the point whose Y coordinate is
expl and whose X coordinate is exp2. For example,

4-50 58X7338

-4+
ATAN2(-4.5,1)=-77.5°

-6+

SETC(C,ATAN2(5,3)); --Gives same result as ATAN(5/3)
SETC(C,ATAN20.5,5.5)); --Result is same as ATAN(1), which is 45.
SETC(C,ATAN2(-4.1,-4.1)); --Result is 180 degrees off from ATAN(1).

--Instead of returning 45, -135 is returned
--because the point (-4.1,-4.1) is in the
--third quadrant.

SETC(C,ATAN2(-10,0)); --Result is -90. This is because the point
--(0,-10) makes an angle of -90 degrees with
--the positive X-Axis.

SETC(C,ATAN2(10,0)); --Result is 90. This is because the point
--(0,10) makes an angle of 90 degrees with the
--positive X-Axis.

SETC(C,ATAN2(0,10)); --Result is 0 because the point (10,0) is on
--the positive X-Axis.

SETC(C,ATAN2(0,-10)); --Result is 180 because the point (-10,0) is
--on the negative X-Axis.

SETC(C,ATAN2(0,0)); --Will cause a run-time data error.
--The error number will be 52.

This can be made conceptually clearer by considering the result of
the ATAN2 function graphically, as shown in the following figure.

Graphic Representation of the ATAN2 Function

4. COS(exp) - Will return the , cosine of the angle given by the
expression. Expression must be the angle in degrees. For example,

SETC(C,COS(0)); --Sets C to 1 (i.e. COS(0)=1)
SETC(C,COS(90)); --Sets C to 0 (i.e. COS(90)=0)
SETC(C,CO5(-120)); --Sets C to -.5 (i.e. COS(-120)=-.5)

Chapter 4. Learning the AML/Entry Language 4-51

5. CSTATUSO - Will return the communications status. The parentheses
must be present. The following two AML/E Version 4 statements are
equivalent:

CSTATUS(C);
SETC(C,CSTATUS());

By using CSTATUS as a function, a counter will no longer have to be
used to store the result for a later comparison in a COMPC or TESTC
command. See "Commands That Allow Expressions" on page 4-54 and
"CSTATUS Command" on page 4-17 for more on this. Both forms are
provided, the command and the function form. The command form must
have a single counter parameter, and the functional form must have
no parameters.

6. FROMPTIpt,expl_ - Will return one of the four coordinates of the
given point depending on the expression. For example,

SETC(C,FROMPT(PTA,3)); --Sets C to the Z coordinate of the point
PTA.

The real expression will be truncated to an integer, and if the
resulting integer is not 1,2,3 or 4 (X,Y,Z or Roll), then a data
error (code = 50) will result.

7. JISTOGS.(4—...-Will return the motion status. The parentheses must be
present. The following two AML/E Version 4 statements are
equivalent:

MSTATUS(C);
SETC(C,MSTATUS());

By using MSTATUS as a function, a counter will no longer have to be
used to store the result for a later comparison in a COMPC or TESTC
command. See "Commands That Allow Expressions" on page 4-54 and
"MSTATUS Command" on page 4-19 for more on this. Both forms are
provided, the command and the function form. The command form must
have a single counter parameter, and the functional form must have
no parameters.

8. SIN(exp) - Will return the sine of the angle given by the
expression. Expression must be the angle in degrees. For example,

SETC(C,SIN(0)); --Sets C to 0 (i.e. SIN(0)=0)
SETC(C,SIN(-90)); --Sets C to -1 (i.e. SIN(-90)=-1)
SETC(C,SIN(150)); --Sets C to .5 (i.e. SIN(150)=.5)

9. SQRT(exp) - Will return the square root of the expression. If the
expression is negative then a data error (code 51) will occur. For
example,

SETC(C,SQRT(4)); --Sets C to 2
SETC(C,SQRT(100)); --Sets C to 10
SETC(C,SQRT(0)); --Sets C to 0
SETC(C,SQRT(-ABS(C))); --Will cause a data error unless C is 0

4-52 58X7338

10.TAN(exp) - Will return the tangent of the angle given by the
expression. Expression must be the angle in degrees. If the angle
is 90 degrees (or a multiple thereof) then a data error (arithmetic
error) will occur.

SETC(C,TAN(0)); --Sets C to 0 (i.e. TAN(0)=0)
SETC(C,TAN(135)); --Sets C to -1 (i.e. TAN(135)=-1)
SETC(C,TAN(-90)); --Causes a run time error

11.TESTI(port number) - Will return either 0 or 1, depending on whether
the specified DI port is active or not. For example,

SETC(C,TESTI(5)); --Sets C to either 0 or 1, depending on DI 5

This function may be used to see if any or all of a group of digital
inputs are active. For example, to test that at least one of DI(1)
DI(4) are active, one would use:

COMPC(TESTI(1)+TESTI(2)+TESTI(3)+TESTI(4) > 0 , OK);

If at least one of these DI is on, then control branches to the
label OK. To test that all of DI(1) - DI(4) are active, one would
use:

COMPC(TESTI(1)+TESTI(2)+TESTI(3)+TESTI(4) = 4, OK);

If all of these DI are on, then control branches to the label OK.

12.TESTP(pallet) - Will return the current part number of the
--____n=riti nfthat. For example,

SETC(C,TESTP(PAL)); --Sets C to the current part number of PAL

By making TESTP a function call, users may now use the more powerful
COMPC verb for testing the current part number of a pallet. See
"Commands That Allow Expressions" on page 4-54 and "TESTP Command"
on page 4-78 for more on this.

13.TRUNC(exp) - Will truncate the real expression to an integer. The
numbers are "rounded downwards." For example,

SETC(C,TRUNC(12.1)); --Sets C to 12
SETC(C,TRUNC(.99)); --Sets C to 0
SETC(C,TRUNC(-.0001)); --Sets C to -1 (note that negative values are

--rounded downwards).

AML/E does not provide the MOD function, which returns the remainder
of an interger division. This may be performed by using the TRUNC
function. For example, A MOD N (the remainder after dividing A by
N) can be attained from:

A-N*TRUNC(A/N)

Chapter 4. Learning the AML/Entry Language 4-53

Comands That Allow Expressions

Expressions are allowed in the following /E commands:

COMPC(exp < exp,label);

SETC(counter,exp);

TESTC(exp,exp,label);

ZMOVE(exp);

Using expressions and functions can make AML/E programs very efficient.
For example, applications should use the arithmetic function form of
CSTATUS and MSTATUS instead of the command form, as shown below:

COMPC(MSTATUS()=0,CONTINUE);

Using the command form would require the declaration of a counter, the
MSTATUS command, and then finally the COMPC command. Three AML/Entry
lines have been replaced by one.

Many other AML/Entry commands (i.e. GUARDI, LINEAR, PAYLOAD, ZONE, to
name a few) do not allow expressions as arguments. They do, however,
allow counters as arguments. An alternate solution is to use the SETC
command to set a counter, and then use the counter in these commands.

Extsressions are not allowed within the ITERATE statement. Even though
most of t e above commands may appear in an ITERATE statement, they must
appear "stand-alone" for expressions to be legal. When these verbs are
used inside an ITERATE statement, the arguments that are unpacked from
the aggregates and actually used depend on the command. See the
discussion of SETC, TESTC, and ZMOVE in Appendix A, "Command/Keyword
Reference."

4-54 58X7338

EXAMPLE APPLICATIONS USING EXPRESSIONS

Circular Motion

Suppose an application required a manipulator to move in a circle
centered at the point (X0,Y0) with a radius of R. This can best be
performed if one uses polar coordinates. The circle in the X-Y plane
can be represented in polar coordinates as follows:

X = XO + R*COS(THETA)
Y = YO + R*SIN(THETA)

As THETA is stepped from 0 to 360 degrees, a circle is traced. In order
to make the robot move in a circle, these expressions are used to
calculate intermediate points on the circle. The following program
performs this.

X: STATIC COUNTER;
Y: STATIC COUNTER;
XO: NEW 0;
Y0: NEW 500;
R: NEW 150;
MAIN: SUBR;

DEGREE: STATIC COUNTER;
SETC(DEGREE,0);
ZONE(15);
PAYLOAD(11);

--The temporary locations
--Center of circle at (0,500)

--150 mm radius

--Steps from 0 to 360 degs, 3 per step
--Start from right side of circle
--Minimum settle time
--Slow speed

LOOP: --Loop from 0 to 360 degrees
SETC(X,X0+R*COS(DEGREE));--X location of next point
SETC(Y,Y0+R*SIN(DEGREE));--Y location of next point
PMOVE(PT(X,Y,0,0)); --Perform move
SETC(DEGREE,DEGREE+3); --Increment for next point
COMPC(DEGREE<=360,LOOP); --End of Loop

END; --End of program

Chapter 4. Learning the AML/Entry Language 4-55

Treating DI As Integers

AML/E programs wishing to take a course of action based on a digital
input use the TESTI verb to read in the value of the input. However if
action needs to be taken based on a combination of inputs, then using
math is the most general solution. The solution is to treat a
consecutive string of digital inputs as an unsigned binary number. For
example, an application can treat digital inputs 1 through 4 as an
unsigned binary number. A binary number consists of just 0's and l's.
The rightmost digit is worth 1, the second from the right is worth 2,
the third from the right is worth 4, the fourth from the right is worth
8, etc. This may be better understood by considering some examples.

+ 1*1)
+ 1*8)
+ 1*8 + 1*4 + 1*2 + 1*1)

I I I I
I I I I L Worth 1
I I I 	Worth 2
I I I Worth 4

! I
	 Worth 8

Worth 16

In order to write a Subroutine that reads in the digital inputs and
returns the decimal value, we must first decide how to map the digital
inputs to a binary number. The solution given uses two parameters which
may be treated as counters (parameters are discussed in "Using
Subroutines with Parameters" on page 4-68). The first one, called
FIRST, designates the digital input that will be the left digit of the
binary number. The second one, called LAST, designates the digital
input that will be the right digit of the binary number. FIRST must be
<= LAST. For example, if FIRST=1 and LAST=4, then the resulting decimal
number will range from 0 (all DI off) to 15 (all DI on).

The algorithm that converts the l's and 0's of the digital inputs to the
actual decimal number is quite simple. First note that each digit
except the right most is multiplied by some power of 2. Second note
that the power of 2 to which each digit is multiplied is one higher the
further left in the binary number you go. Thus in order to convert the
binary number to a decimal number, a loop can be used. Each step
through the loop, multiply the attained decimal number by 2 and add the
new digital input, starting from the left most digit, working toward the
right most digit. The subroutine that does this is named TESTDIS, and
is shown below inside a program named MAIN. Try tracing execution with
several values for FIRST and LAST to convince yourself the algorithm
works properly. The decimal number is placed in the global counter
RESULT.

Binary Number Decimal Value
0 0 0 0 0 0
0 0 0 0 1 1 (1*1)
0 0 1 0 1 5 (1*4
1 1 0 0 0 24 (1*16
1 1 1 1 1 31 (1*16

4-56 58X7338

RESULT: STATIC COUNTER; --Will contain result of DI string
MAIN: SUBR;

TESTDIS: SUBR(FIRST,LAST); --FIRST is the lowest DI (most
--significant), LAST is the highest
--DI (least significant).

SETC(RESULT,O); --Initialize result

LOOP: --Loop until FIRST>LAST
COMPC(FIRST>LAST,DONE);
SETC(RESULT,2*RESULT+TESTI (FIRST)); --Each time thru, add the next

--most significant bit and multiply
--all the previous bits by 2.

SETC(FIRST,FIRST+1); --Go to next most significant bit
BRANCH(LOO?); --Continue

DONE:
END; --End of TESTDIS subroutine

TESTDIS(1,8); --Look at first 8 DI
TESTC(RESULT,255,ALLON); --If all the DI are on then branch

--to label ALLON

Determining the Row and Column of a Part in a Pallet

Suppose that an application needs to determine the row or column of the
current part of a pallet. By using the TESTP function, this is
possible. The following code places the row number in ROW and the
column number in COL. Assume PPR contains the number of parts per row
of the pallet being used. T is a temporary counter.

SETC(T,TRUNC((TESTP(PAL)-1)/PPR)); --Holds the number of skipped rows
SETC(ROW,T+1); --Adding 1 gives the actual row
SETC(COL,TESTP(PAL)-T*PPR); --Subtracting the number of parts

--in the skipped rows gives the
--number of columns

Chapter 4. Learning the AML/Entry Language 4-57

Compiler Directives

AML/E Version 4 supports two compiler directives:

Directive

Description

Includes a file within a file
Causes a page break in the listing file

Using the Include Compiler Directive --%I

/ y 42szyt Ubl_es__i toh-AMLEntralloc iclu ' This means that you are able to
include commands in one file that cause additional files to be read by
the compiler. The lines read in by the compiler from Included files are
included in the listing file and the output (.ASC) file. Format of the
command is outlined below.

--%I'filespec'

The percent sign immediately following a comment marker (the double
dash) indicates a Compiler directive. The capital I indicates the
desired function is an Include (a lower case i is also recognized).
After the I, the file name specification follows in single quote marks.
Embedded blanks are not allowed. The compiler does not a
Include files (a file being included can not itse f contain an 'Include
command). The filespec of the file to be Included must include the
file's extension. If not specified, the compiler does not assume .AML.
If the drive is not specified in the filename, the compiler assumes the
file is on the same 'drive as the AML/Entry program. The filespec may
not include a path; only a drive, filename, and file extension may
appear.

The compiler issues an "Including file" message whenever a file is
included. An "Including file" message is issued for both the "Reading
Input File" phase and "Converting AML/E Program" phase. If an error
occurs in an Include file, the error is in the file named in the last
"Including File" message

4-58 58X7338

In the .LST file, the lines of an Included file are identified by a %
(percent) sign that follows the line address indicator. If an err&?—rr
found on a line within an Include file, the line number reported is
numbered with respect to that file and is followed by a percent sign.
In the example outlined below, two lines of code are included in the
subroutine MAIN by the command --%I'A:DATA.AML'. The example below
shows the program (MAIN.AML), the included data (DATA.AML), and the
listing (MAIN.LST).

*** MAIN.AML File *** *** DATA.AML File ***

MAIN: SUBR;
--WA:DATA.AML'
PMOVE PT1;
PMOVE PT2;
END;

PTl:NEW PT(650,0,0,0);
PT2:NEW PT(0,550,0,0);

*** MAIN,LST File ***

MAIN:SUBR;
--%I'A:DATA.AML'

%PT1:NEW PT(650,0,0,0);
%PT2:NEW PT(0,550,0,0);
PMOVE PT1;
PMOVE PT2;
END;

Using the Page Compiler Directive 7-%P

This compiler directive causes a page break in the listing (.LST) file.
It allows you to control the paging within the listing file.

Format of the command is outlined below.

Chapter 4. Learning the AML/Entry Language 4-59

SUBROUTINES

A subroutine is a small unit of the program with a clearl fined
eginning •n• ' a• s a su•rou usually work
.ogether to 1777PCific job, such as moving the arm. This section
includes information on the various aspects of subroutines including:

• System subroutines

• User subroutines

• Subroutines and formal parameters

• Name restrictions on parameters

• Using Subroutines

• Ownership

System Subroutines

System subroutines are part of the AML/Entry program. These subroutines
rved names. For

example, PMOVE is a system subroutine that moves the arm to a point in
the work space when the statement executes in your program. You cannot
alter system subroutines, nor can you use a name that is reserved for a
system subroutine for other purposes.

User Subroutines

You have already seen that an outer subroutine is required for every
program. The outer subroutine, like all other subroutines, uses a SUBR
statement and an END statement. Your program can have user subroutines
within this outer subroutine.

4-60 58X7338

User Subroutines in the AML/Entry Program

An example:

**
1 MAIN:SUBR; --OUTERMOST SUBROUTINE
2 STATION1:SUBR; --LEVEL 1
3
4 END; --END STATION1
5
6 STATION2:SUBR; --LEVEL1
7 STATION3:SUBR; --LEVEL 2
8
9 END; --END STATION3

10
12 END; --END STATION2
13
14
15
16
17 END; --END OF PROGRAM
18
 **

The outer subroutine which is your application program, has a SUBR (line
1) and an END (line 17). STATION1 and STATION2 are level 1 subroutines
within the outer subroutine. STATION1 and STATION2 are level 1
subroutines because they are contained in the outer subroutine. Each
subroutine has its own END statement (lines 4 and 12 respectively).

STATION3 is a level 2 subroutine because it is contained in a level 1
subroutine. There are no limits on the number of levels of subroutines
in the program.

Development of User Subroutines

User subroutines are an important part of the development of your
programs. It is to your advantage to write a subroutine and keep calling
it wherever some action is repeated in different parts of the program.
It not only gives you the convenience of less typing, but helps save
program space in the controller. Saving space in the controller allows
you to write longer programs. By creating user subroutines, you also
make your programming easier to follow and update. To call a user
subroutine you call its name as a command in your main program, or in
any other subroutine after it.

Chapter 4. Learning the AML/Entry Language 4-61

User subroutines take one of two forms.

id:SUBR(parameterl,parameter2,....); •
statement)
statement2

statementn
END;

or

id:SUBR;
statementl
statement2

statementn
END;

The ID is an identifier that you use like a name. It has the below
listed format and characteristics.

• Up to 72 characters

• First character must be alphabetic

• Remaining characters must be alphabetic, numeric, or underscore (._)

• An underscore can not be the last character

• Special characters, such as an asterisk (*), are not permitted.

The colonSilis a definition operator required between the identifier
and the SIORfilm.

The SUS BR term is a keyword that identifies the start of a subroutine.

TheElm12 1, are placed around the parameters. If the subroutine has
no external parameters, the parentheses are not required.

The semicolon (;) is a delimiter that identifies the end of an AML/Entry
program statednT7

The statements in the subroutine define the tasks you want performed
when the subroutine is executed.

The END keyword identifies the last line of the subroutine. The END
IEZS"MMm-d—ret.arrit—the program execution to the next command to be executed
after the line that called the subroutine.

•
4-62 58X7338

• Formal Parameters in Subroutines

Parameters are variable or constant values appearing in a statement.
Parameters restrict or determine the specific form of the statement.

When using subroutines in your programs you can use formal and actual
parameters. Formal parameters are variables that are enclosed in the
parentheses after the SUBR keyword. Every parameter in the parentheses
of the SUBR statement must be used somewhere in that subroutine. Formal
parameters do not have a value associated with them until the subroutine
is used and a value is provided. The statement that calls the subroutine
provides the parameter enclosed in parentheses after the calling
statement. The parameter in the calling statement is an actual parameter
because the value is known.

Subroutines with formal parameters are very useful when you want to
repeat the same series of commands with a large number of constants of
the same kind of data (numbers, points, strings, characters). Since the
parameters are passed to the subroutine, you can change different
aspects of the program every time the subroutine is called.

When you have a subroutine with formal parameters, the formal parameters
do not have to be declared. The way they are used in the digammutiao.-
determines the kind of data (naMberb •°ants stin s c ; that
m orma parameter.

Parameter Passing

All parameters are passed by value. This means that all formal
PIYMMuters (values) are spies of the caller's parameter (actual value).
If the called subroutine changes_a formal parameter's value, it does not
change the value used by the ciaTins-anImadjsul,-- .135;;;;ions can not be
passed as a parameter to g-sunroutine. Inste'ad, ass on
to a counter and pass the counter.

Example of Subroutine with Formal Parameters

The following is a fragment of a program that uses subroutines with
formal parameters. The subroutine PICKUP has the parameters PLACE and
TIME which are formal parameters. There are no initial values associated
with either parameter.

The subroutine PICKUP does not execute in this program until it is
called by its name.

The formal parameters PLACE and TIME have their data types determined by
their usage within the subroutine. PLACE is used with the command PMOVE.
Since the command PMOVE requires data to be of the type PT, any data
passed to parameter PLACE must be of this type. Parameter TIME is used
with the DELAY command. Any data passed to the subroutine to be used by
parameter TIME must be in the valid working range for the DELAY command.

Chapter 4. Learning the AML/Entry Language 4-63

 **
1 NEWPROG:SUBR; --BEGINNING SUBROUTINE
2
3 PICKUP:SUBR(PLACE,TIME);
4 PMOVE(PLACE);
5 ZMOVE(-250);
6 GRASP;
7 DELAY(TIME);
8 ZMOVE(0);
9 END;

**

Restrictions on Parameters

When using subroutines, certain restrictions exist concerning parameter
names and calls.

Formal Parameter Names Restrictions

The name of a formal parameter can not be equivalent to

• The of lobaienan

• The name of a subroutine

Actual Parameter Assignment Restrictions

An actual parameter in the calling statement can not be

•

• Aggregates

• Subroutine names

• Labels

• A reserved word

4-64 58X7338

Using Subroutines

•

Using Subroutines without Parameters

• Except for the outermost subroutine, a subroutine is not executed
until it is called by name. Put the identifier (name), followed by
a semicolon (;), at the location you want the subroutine to execute.

Example:

STATION:SUBR;
PMOVE(PT(300,400,-100,0);
ZMOVE(-250);
ZMOVE(0);
END;

STATION; --CALLED LATER IN THE PROGRAM

When this program is executing, the subroutine STATION is not activated
until the command line :STATION;" The program then executes the entire
STATION subroutine as if'it was riated there.

• The subroutine must be declared before you can call it. In other
words, the contents of the -gUbitttine must be listed within the
program before it can be called for execution.

• When subroutines are contained within other subroutines, the inner
or nested subroutines must be declared before an
executed within the outer - su • •

Example:

OUTER:SUBR;
STATION:SUBR;

PMOVE(PT(300,400,-100,0);
ZMOVE(-250);
ZMOVE(0);
END;

STATION;
WAITI(6,1,10);

END;

Within the outer subroutine, the WAITI statement is an executable
statement. The WAITI statement must follow subroutines listed within the
outer subroutine, in other words the WAITI command cannot precede the
STATION subroutine declaration. If the subroutine STATION contained a
nested subroutine it would have to be declared before the PMOVE command.

•
Chapter 4. Learning the AML/Entry Language 4-65

Rules Calling Subroutines

The following example is used to illustrate the rules for calling
subroutines. The rules for calling subroutines are as listed below.

1. A subroutine must be previously declared, and

2. The called subroutine must either:

a. Be at the same level as the calling subroutine, oz,

b. Be owned by the calling subroutine.

Example:

1 MAIN:SUBR; --OUTER LEVEL
2 A;SUBR; --LEVEL 1
3 B:SUBR; --LEVEL 2
4 C:SUBR; --LEVEL 3
5 END; --END C LEVEL 3
6 C; --B CALLS C
7 END; --END B LEVEL 2
8 8; --A CALLS B
9 END; --END A LEVEL 1

10
11 D:SUBR; --LEVEL 1
12 E:SUBR; --LEVEL 2
13 F:SUBR --LEVEL 3
14 END; --END F LEVEL 3
15 F; --E CALLS F
16 END; --END E LEVEL 2
17 G:SUBR; --LEVEL 2
18 END; --END G LEVEL 2
19 A; --D CALLS A;
20 E; --D CALLS
21 G; --D CALLS G
22 END; --END D LEVEL 2
23 A; --MAIN CALLS A, A CALLS B, B CALLS C
24 D; --MAIN CALLS D; D CALLS A, A CALLS B, B CALLS p,
25 --D CALLS E, E CALLS F, D CALLS G
26 END; --MAIN END STATEMENT

4-66 5887338

In this example of calling subroutines, all the possible allowed calls
are shown. The structure of the program is as follows:

• The program has the required outer subroutine, named MAIN.

• There are two level 1 subroutines, named A and D. Subroutine A
precedes subroutine D in the listing.

• Subroutine A has a level 2 subroutine (B) and a level 3 subroutine
(C). The level 3 subroutine is owned by the level 2 subroutine.

• Subroutine D has two level 2 subroutines (E and G). Subroutine E
owns a level 3 subroutine (F).

In the example, subroutine A can call subroutine B because B has already
been declared (rule 1) and it is owned by A (rule 2b). Notice that
subroutine A can't call subroutine C because A does not own C (rule 2b).
Therefore,Mfb-Y3tITTirn.i."—i--- Ti IT"..—.'1sf ocasuroutine C.

Subroutine D can call subroutine A because A has already been declared
(rule 1), and it is at the same level as D (rule 2a). Subroutine D can
also call subroutines E and G since they have already been declared
(rule 1) and owned by D (rule 2b).

Subroutine E cannot call subroutine G because it violates rule 1. That
is, G has not been declared yet.

Chapter 4. Learning the AML/Entry Language 4 -67

Using Subroutines with Parameters

When you send multiple parameters to a subroutine, the order the
parameters are listed determines the order in which they are sent. The
next example has multiple formal parameters in the SUBR statement. When
the subroutine is called (line 13), the actual parameters POINT1 and 1.0
are provided.

The global constant POINT1 is a location declared on line 1. When you
place parameters in the SUBR statement and then call the SUBR by name
withsaxametere-r-the order of the list in the SUBR statement must match
the order of .atactuslm4arnetera in the calling statement.

Example

.... **4f*********
1 POINT1:NEW PT(300,400,-100,0);
2
3 MAIN:SUBR; --BEGINNING SUBROUTINE
4
5 PICKUP:SUBR(PLACE,TIME);
6 PMOVE(PLACE);
7 ZMOVE(-250);
8 GRASP;
9 DELAY(TIME);

10 ZMOVE(0);
11 END;
12
13 PICKUP(POINT1,1.0);
14 END;

.... ***

Once you have declared a subroutine formal parameter as a particular
type of data, all later calls to the subroutine must use the parameter
with a similar type of variable. PLACE is used with the command PMOVE.
Since the command PMOVE requires data to be of the type PT, any data
passed to parameter PLACE must be of this type. Parameter TIME is used
with the DELAY command. Any data passed to the subroutine to be used by
parameter TIME must be a number in the valid working range for the DELAY
command.

Example:

Valid call to the SUBR PICKUP PICKUP(POINT1,20,0);

Invalid call to the SUBR PICKUP - PICKUP(50,20.0);

The next example covers all facets of subroutine usage discussed in this
section so far. It is similar to previous examples, but it is written
to perform repetitive tasks by using subroutines.

The subroutines are called by placing their names on the lines in the
program where you want them to execute. In this example the calls to the
subroutines occur on lines 21, 22, 23, and 24. The subroutine PICKUP
requires two parameters to execute every time it is called.

4-68 58)(7338

• Example:

**
1 POINT1:NEW PT(300,400,-100,0);
2 POINT2:NEW PT(400,300,-50,0);
3 MAIN:SUBR; --BEGINNING SUBROUTINE
4
5 PICKUP:SUBR(PLACE,TIME);
6 PMOVE(PLACE);
7 ZMOVE(-250);
8 GRASP;
9 DELAY(TIME);

10 ZMOVE(0);
11 END;
12
13 DROPOFF:SUBR;
14 DPMOVE(<10,-5,-10,-20>);
15 ZMOVE(-200);
16 RELEASE;
17 DELAY(1.0);
18 ZMOVE(0);
19 END;
20
21 PICKUP(POINT1,1.0);
22 DROPOFF;
23 PICKUP(POINT2,1.0);
24 DROPOFF;
25 END; --END OF PROGRAM

**

It is important to remember that no statements are executed until all
the subroutines have been fully declared (line 19). When executed, the
`statements must parameters in their proper order.

In the above example, POINT1 and POINT2 are global declarations for
points. When the subroutine PICKUP is called in line 21, the actual
parameter POINT1 is used and 1.0 is used for TIME. When the subroutine
PICKUP is called in line 23, the actual parameter POINT2 is used and 1.0
is used again for TIME.

Chapter 4. Learning the AML/Entry Language 4-69

Using the ITERATE command to Repeat a Subroutine

ITERATE statements can be used to shorten re•etitive ro rams ev or
In the following examp e, t e ITERATE statement is used to repeat a user
subroutine called WORK.

Note: Using ITERATE to repeat a function does not make a program
operate any faster or save any controller space. ITERATE is useful
for saving lines in the actual written program, and in 'increasing
readability.

1 POINT1:NEW PT(300,400,-100,0);
2 POINT2:NEW PT(400,300,-50,0);
3 POINTS:NEW <POINT1,POINT2>;
4 MAIN:SUBR;
5 WORK: SUBR(LOCATION);
6 PICKUP: SUBR(PLACE,TIME);
7 PMOVE(PLACE);
8 ZMOVE(-250);
9 GRASP;

10 DELAY(TIME);
11 ZMOVE(0);
12 END;
13
14 DROPOFF:SUBR;
15 PMOVE(PT(100,500,0,-20));
16 ZMOVE(-200);
17 RELEASE;
18 DELAY(1.0);
19 ZMOVE(0);
20 END;
21
22 PICKUP(LOCATION,1.0);
23 DROPOFF;
24 END;
25 ITERATE('WORK I ,POINTS);
26
27 END; --END OF PROGRAM
 ,c* A**************

--GLOBAL POINT DECLARATION S

--AGGREGATE OF DECLARED POINTS
--BEGINNING SUBROUTINE
--INNER SUBR OWNED BY MAIN
--INNER SUBROUTINE OWNED BY
--WORK

--ANOTHER INNER SUBROUTINE
--OWNED BY WORK

--THESE COMMANDS ARE EXECUTED
--WHEN SUBROUTINE WORK IS USED
--END SUBROUTINE WORK

4-70 58X7338

This program has the required outer subroutine and two more levels of
user subroutines. The subroutine WORK is a level 1; PICKUP and DROPOFF
are level 2.

The aggregate is POINTS, which has two point locations POINT1 and
POINT2. The ITERATE statement calls WORK the first time and passes the
parameter POINT1 to the subroutine. Within WORK is the subroutine
PICKUP, which is called by its name. A formal parameter LOCATION has
data type PT and takes POINT1 for its value the first time. It is
passed along with 1.0 to subroutine PICKUP. The subroutine DROPOFF is
executed after PICKUP but no actual parameters are passed, since none
are required.

A simple flow chart for the program would be:

1. Statement 25 is first executed and POINT1 is passed to subroutine
WORK.

2. WORK passes POINT1 and 1.0 as formal parameters to subroutine PICKUP

3. PICKUP executes, and then DROPOFF executes

4. Program returns to the ITERATE statement on line 25

5. Statement 25 is executed again, POINT2 is passed to the subroutine
work, and the process continues as before.

If more values were present in the aggregate, the program would continue
in the same manner until all the values in the aggregate were used.

Chapter 4. Learning the AML/Entry Language 4-71

Ownership and Multiple Name Occurrence

These two concepts are very important to the use of subroutines. They
are essential to subroutine structure.

If a subroutine declares a variable, it is the owner of that variable.
The variable cannot be used anywhere else in the program. If a
subroutine defines another subroutine, the outer subroutine owns the
inner subroutine, and the inner subroutine may only be accessed by the
outer subroutine.

Example:

MAIN:SUBR;
ANEW 3_;_

INNER:SUBR(B);
C:NEW 5;

END;

END;

In the example, MAIN owns both the constant A and the subroutine INNER.
Subroutine INNER owns formal parameter B and constant C.

Since the subroutine MAIN owns the constant A the subroutine INNER can't
use it. The same is true for the constant C, it is owned by the
subroutine INNER and cannot be accessed by MAIN. If any other
subroutines are declared outside of MAIN they cannot access the
subroutine INNER. In the case of the formal parameter, you can only
send the parameter B to the program when you call the subroutine INNER.

Names in your program may look alike. If they have different ownership
and different definitions, they are not alike.

Example:

MAIN:SUBR;
,OBJE9ILNEW 3;

INNER:SUBR;
OBJECTLNEW PT(400,300,0,0);
PMOVE(OBJECT); --OBJECT IS A POINT HERE

END;

WAITI(OBJECT,1); --OBJECT IS AN INTEGER

END;

4-72 58X7338

• In this example OBJECT is two different types of data. When used by the
subroutine INNER it is a point; when used by the subroutine MAIN it is
an integer. This is possible because each subroutine owns a local
constant named OBJECT, and local constants can only be used in the
subroutine that declares them.

Global declarations are accessible to all levels of a program.
Attempting to redefine a global declaration is not permitted.

Note: Even though it is permitted to have identical names for
different variables, it can be very confusing to anyone trying to
use the program. Therefore, identical name usage should be avoided
whenever possible.

•
Chapter 4. Learning the AML/Entry Language 4-73

1. The location and orientatio •allet is inde•endent of th
tas •eing described.

2. The task can be described using names, following their declarations.

I •

ADDITIONAL TOPICS FOR PROGRAM ENHANCEMENT

So far in this chapter you have been introduced to the AML/Entry
language, its structure and basic concepts. This final section of the
chapter covers three additional topics that will further enhance your
program. The topics are:

• Pallet

• Region

• Host Communications

Pallet

A major application of robotic systems is sorting and packing of items.
These tasks require the manipulator to move to a large number of
distinct locations that are related in a simple way. Rather than
requiring you to calculate all these points explicitly, the palletizing
aids provided by AML/Entry enable such tasks to be defined by the
palletizing commands.

The palletizing extensions aid in two ways.

Pallet Description

A pallet is aregularg emssanento' n a work surface. A regular
arrangement is a pattern where the relationship between one item and the
next is the same for all items.

A pallet is organized in rows; each row contains 7fixed number of
items, with constant spacing between items. The spacing r ,-Mr", "1"1:
also constant.

4-74 58X7338

The number of items in a pallet is the product of the number of items
per row and the number of rows. Each item is given a number. The first
item is at the lower left corner_of the2111at. and is item one. The
'Tat part iirtrie row is item 2, and so on to the end of the row.
Numbering continues to the last item, which is at the upper right C.0 rnar
of •__tjaa_pailt„The following diagram illustrates the numbering of a
pallet containing 12 parts in three rows of four items each.

UR
9 10 11 12

5 6 7 8
ppr = 4

n = 12

1 2 3 4
LL LR

Pallet is a keyword and its declaration requires parameters as part of
the statement. This information provides orientation data, based on the
coordinates of parts located in three of the four pallet corners,
identifies the number of rows in the pallet, and the total number of
parts in the pallet.

A pallet is declared with the STATIC keyword:

name : STATIC PALLET(LL,LR,UR,PPR,N);

The pallet is defined by the arguments listed below.

1. Defining the location (as a PT) of the lower left part (LL of the
pallet (part 1), the IcTarnaOf the lower right par) of the
pallet (part 4), the location of the upper right part (UR) of the
pallet (part 12).

2. Specifying the • .1. -

number o parts (12) (N).
r••■•••■•■■•••••■•••.

r-row (4) (PPR) and the total

Orientation of the pallet is automatically assumed to be perpendicular
to the Z-axis. In the coordinates that declare the lower—left, lower
Fignr7-Nun-uNizi- right corners of the pallet, the coordinate for the
Z-axis is ignored. Even though the Z-coordinate maintains its last
position, regardless of what is entered here, it must be included when
working with servoed Z arms. Any palletizing application does not work
correctly if the declared pallet is non-perpendicular to the Z-axis of
the manipulator.

A one-dimensional pallet can either consist of one row or one column.

Chapter 4. Learning the AML/Entry Language 4-75

EXAMPLE:

LL: NEW PT(0,500,0,0);
LR: NEW PT(-300,500,0,0);
UR: NEW PT(-300,200,0,0);
N: NEW 5;
P: STATIC PALLET(LL,LR,LR,N,N);
Q: STATIC PALLET(LR,LR,UR,1,N);

P is a one dimensional pallet with one row, Q is a one dimensional
pallet with one column. Note that for a one dimensional pallet with one
row, where an upper right point would normally be specified, the lower
right point is repeated. For a one dimensional pallet with one column,
where a lower left point would normally be specified, the lower right
point is repeated. Also note that for a one dimensional row, the number
of parts per row equals the number of parts, and for a one dimensional
column the number of parts per row equals 1. In either case, the first
part is the part at LL and the last part is the part at UR.

4-76 58X7338

PALLETIZING Commands

Once a pallet is defined, an internal representation of the pallet is
maintained to indicate the s•eci is ()cation o 6 11 • When
first de :re•, t e current part is un•e ine . ou must use the SETPART
compaR4to change the current part number to a valid part number.
this is done, ,NEXTPART and PREVPART may be used to automatically
increment or decrement the current part number for the pallet. These
commands are circular., When the last part has already been fetched via
ETPART, a subsequent NEXTPART will set the current part back to the
first part. Likewise, a PREVPART when the current part is the first
part wraps the current part back to the last part. There are five
commands available for use with pallets.

Command

GETPART
NEXTPART
PREVPART
SETPART
TESTP

Description

Moves Arm to Current Part
Increases Current Part By 1
Decreases Current Part By 1
Sets Current Part Counter
Tests Current Part Counter

GETPART Command

GETPART(pallet_name);

Instructs the arm to move to the location of the current part. The arm
is moved to the appropriate X-Y location of the pallet. The Z-axis is
unchanged from its current pow sition. The roll Roll axis is set to tre"
'i-cirr-ur-ftie lower left point.

NEXTPART Command

NEXTPART(pallet name ;

The current part indicator can be advanced to the next part on the
pallet.

If the current part indicator is at the last part, then NEXTPART changes
the current part indicator to be the first part.

•
Chapter 4. Learning the AML/Entry Language 4-77

PREVPART Command

PREVPART(pallet_name);

To move backward through a pallet.

Similarly, if the current part indicator is the first part, then
PREVPART changes the current part indicator to the last part.

SETPART Command

SETPART(pallet_name,value);

The current part can be set to a particular part number.

Where pallet_name is the name of a pallet, and value is a part number.
The value can consist of an integer constant, counter, or formal
parameter. Since parameters are passed by value, if the SETPART is used
in a subroutine to set the part of a pallet that is passed as a formal
parameter, then the part number of the actual pallet passed is not set.
The part number of the pallet in the subroutine will be set, however.

TESTP Command

TESTP(pallet_name,testvalue,label);

The TESTP command compares the present pallet art number to If
they are the same, a,branch is ma e o a label in the same subroutine.
The matching label must be in the same subroutine as the TESTP. The
testvalue can consist of an integer constant, counter, or formal
parameter.

Note: This is the command form of TESTP. With the command form
of TESTP, the testvalue and label must be given. TESTP may also
be used as an arithmetic function within expressions. In the
latter form, testvalue and label are not given.

4-78 58X7338

Using Palletizing Statements

In the following example, the 12 parts of the sample pallet are
individually picked up, and put in an ejector. The ejector indicates by
DI/DO when the part has been removed.

LL:
LR:
UR:
N:
PPR:

NEW PT(200,200,0,30);
NEW PT(300,200,0,30);
NEW PT(300,300,0,30);
NEW 12;
NEW 4;

--PALLET LOCATION DECLARATIONS

EJECTOR: NEW PT(300,400,-100,0); --POINT WHERE PARTS ARE PLACED
EJECTOROK: NEW 5;
SAMPLE: STATIC PALLET(LL,LR,UR,PPR,N);
MAIN: SUBR;

SETPART(SAMPLE,1);
LOOP: GETPART(SAMPLE) . ; ZMOVE(-250); GRASP; DELAY(1); ZMOVE(0);

PMOVE(EJECTOR);
FEEDCHK: WAITI(EJECTOROK,1,10.5);

ZMOVE(-250); RELEASE; DELAY(1); ZMOVE(0);
NEXTPART(SAMPLE); --GET THE NEXT PART, IF
COMPC(TESTP(SAMPLE)<>1,LOOP); --STILL MORE LEFT

DONE: BREAKPOINT;
END;

The above example uses the arithmetic function form of TESTP. The
command form of TESTP could be used, but an additional BRANCH command is
needed.

Palletizing and Formal Parameters

The palletizing function allows pallets to be defined in terms of formal
parameters, as well as to be formal parameters. Passi ng .to a
subroutine as a formal parameter is shown below in a program fragment.

PALL: STATIC PALLET(UL,LR,UR,PPR,PARTS);

S: SUBR(PAL);
GETPART(PAL);
END;
S(PAL1);

-- passing the name of
-- the pallet and
-- move to pickup point

-- define the pallet

Note: The parameter is passed by value, therefore if a called
subroutine changes the current part (executes SETPART, NEXTPART,
or PREVPART), the value is changed only in that subroutine. The
caller's copy Zr--1-114—pa-1.1 is not dErFa.

Chapter 4. Learning the AML/Entry Language 4-79

http://parameters.Passing.to
http://parameters.Passing.to
http://parameters.Passing.to

Defining a pallet using formal parameters is shown below in a program
fragment.

MAIN: SUBR;
DEPAL: SUBR(UL,LR,UR,PPR,PARTS);
PAM: STATIC PALLET(UL,LR,UR,PPR,PARTS);

END; -- end of DEPAL

-- Start of Main Subroutine
DEPAL(PT1,PT2,PT3,4,4);

END; --end of MAIN subroutine

4-80 58X7338

•
An example palletizing program is outlined below.

LLPT1: NEW PT(70,400,0,0);
LRPT1: NEW PT(510,400,0,0);
URPT1: NEW PT(510,800,0,0);
LLPT2: NEW PT(-730,-480,0,0);
LRPT2: NEW PT(-410,-480,0,0);
URPT2: NEW PT(-410,-80,0,0);

MAIN: SUBR;
DEFPAL: SUBR(A, B, C, D, E, F, G, H, I, J); -- DEFINE PALLETS

PALL: STATIC PALLET(A, B, C, D, E); -- USING FORMAL
PAL2: STATIC PALLET(F, G, H, I, J); -- PARAMETERS

SETPART(PAL1,1);
SETPART(PAL2,J);

LOOP: GETPART(PAL1);
ZMOVE(-250);
GRASP;
ZMOVE(0);
NEXTPART(PAL1);
GETPART(PAL2);
ZMOVE(-250);
RELEASE;
ZMOVE(0);
TESTP(PAL2, 1, FINI); -- END OF PAL2?
PREVPART(PAL2);
BRANCH(LOOP);

FINI:
END;

 - *** BEGINNING OF EXECUTABLE CODE *** - -
DEFPAL(LLPT1,LRPT1,URPT1,3,12,LLPT2,LRPT2,URPT2,3,12);
END;

Chapter 4. Learning the AML/Entry Language 4-81

Region

AML/Entry allows you to define a frame of reference (region) in the
manipulator workspace that corresponds to some Porternal coordinate
system. Frame of reference allows you to describe motions (in this
area) that are relative to the region itself, not to the manipulator
coordinate syst2115,__Primary use of this feature is to allow appTIZgricTir
programs ta-be constructed to accept host data that refers to some
engineering abstract of the assembly object (such as computer-aided
design data), rather than requiring taught point data. Because of this,
the program may be replicated across multiple machines without changes
in the host data base (all applications use the same set of host data).

REGION is a keyword and is defined by the statement listed below.

R: STATIC REGION (LL,UL,LR,UR,LS_LEN,RS_LEN,TOP_LEN,BOTLEN);

Listed below are the arguments required to describe the region.

LL is a point that is taught in manipulator coordinates to
describe the lower left-hand corner of the REGION. The LL
corner is alwei7F-the origin (0,0,0,0) of the REGION coordinate
system.

LR is a point that is taught 4212511aulAtor coordinates to
describe the lower right-hand corner of the REGION. The X
axis of the REURIN-±s-tr ine connecting the nc.....114$_
points.

UL is a point that is taught in manipulator coordinates to
describe the upper left-hand corner of the RE
of the REGION is always a line connecting the LL and UL
points.

UR UR is a point that is taught in manipulator coordinates to
describe the_upterright-hand corner of the region.

LS_LEN LS_LEN is the lensal„of the left side of the region as
determined by the user. The y coordinate for the upper left
caper of the region coordinate system is always LS_LEN. The
units for LS_LEN are user-defined, and are not always the
same cc=•mate sy

RS_LEN RS_LEN is the length of the right side of the region as
determined by the user. The y coordinate for the upper
right-hand corner of the region coordinate system is always
RS_LEN. The units for RS LEN are user-defined, and are not
always th;"same as the manipulat5T-E55Ydinate system.

LL

LR

UL

4-82 58X7338

(0, LS_LENj1JR,

UL (TOP_LEN, RS_LEN)
Region
A

(0, LS....L EN)
UL

(0,0)
LL

LR
(BCOL_LEN,0)

LL dCa
(0,0) LR

(BOT_LEN, 0)

(TOP_LEN, RS_LEN)
UR

Ye

TOP LEN TOP_LEN is the length of the top side of the region as
determined by the user. The x coordinate for the upper
right-hand corner of the region coordinate system is always
TOP_LEN. The units for TOP LEN are user-defihed, andiirt_agt

as t e mani ulat oor

BOT_LEN BOT_LEN is
determined
right-hand
BOT_LEN. The are user-defined, and Are—riet----

always the same as the manipulator cooraliat% -glitem.

always the s :

the length of the bottom side of the region as
by the user. The x coordinate for the lower
corner of the region coordinate system is always

Chapter 4. Learning the AML/Entry Language 4-83

REGION Command

There is one motion command that is used to designate a move within a
region. The following motion command is:

Command Description
1
1 XMOVE Regional movement
1

XMOVE Command

The REGION definition accepts formal parameters. A REGION need not be
rectangular but, in cases where the REGION is rectangular, its use is
-riaiFirlani57744-rstood. Parallelograms function in a logical manner as
an extension of rectangular behavior.

XMOVE(region_name,point_name)

Here, region_name is the name used in the region definition and
point_name is a point in region coordinates.

REGION Coordinate Generation

An explanation of how the REGION coordinates are generated is presented
to help you understand the basic concept of a REGION.

X and Y Coordinates

The x and y coordinates are generated in the following manner. The x
coordinate is interpolated along a line that connects the LL and the UL
points and along a line that connects the LR and UR points. An
imaginary line is drawn between these two points. The y coordinate is
interpolated along a line that connects the LL and LR points and along
the line that connects the UL and UR points. An imaginary line is then
drawn connecting these two points. Where this line intersects the line
from the x coordinate is the new REGION X,Y coordinate.

Interpolation of X and Y points is done by dividing the XMOVE coordinate
by the appropriate LEN parameter. For example, if the X coordinate from
an XMOVE is 7 and the LS_LEN is 10, the interpolated point is .7 (7/10)
of the way from LL to UL.

Z Coordinate

The REGION does not have to be perpendicular to the Z axis, it can be
tilted. The REGION Z coordinate assumes the region is a planar surface
that touches the LL, LR, and UL points (the UR Z coordinate is ignored).
The Z coordinate is interpolated along this planar surface so that a Z
coordinate of 0 in an XMOVE is on the surface of the REGION plane. A Z
coordinate of 10 within an XMOVE always moves to a point 10 mm above the

4-84 58X7338

REGION plane. Conversely, a Z coordinate of -10 within an XMOVE always
moves to a point 10 mm below the REGION plane.

Note: Nearly vertical regions should be avoided as the
mathematical error associated with the region may cause data
errors.

Roll Coordinate

The roll coordinate is defined by a line that connects the LL and LR
points. This line is defined to be the 0

°
	roll point. The roll

coordinate of the LL, LR, UL, and UR points is ignored. All roll
coordinates within an XMOVE are considered to be positive displacements
from the base line. A roll coordinate of 10

°
 in an XMOVE rotates the

roll axis to a point 10
°
 counterclockwise from the base line.

Using REGIONS

You are able to define points relative to a REGION. This is especially
useful in moving to coordinates that have been generated externally. For
example, consider a rectangular REGION somewhere in the workspace. A
circuit board is placed in this REGION so that the card is aligned with
the X and Y directions of the REGION (not the manipulator). If the card
is to be populated, the external system contains the locations at which
the components are to be inserted in that coordinate system. If a point
is down-loaded from the host, you are able to move the manipulator to
the correct location in the workspace by using the XMOVE command.

Frame of reference commands allow a region of space, shown below, to be
defined as an independently existing entity.

Note: Because each XMOVE requires 1K of controller memory, an
XMOVE should be contained in a subroutine and called whenever
required by the program.

Chapter 4. Learning the AML/Entry Language 4-85

An example program using REGION is outlined below.

LLPT: NEW PT(0,350,0,0);
LRPT: NEW PT(100,350,0,0); LLPT,LRPT,ULPT,URPT
ULPT: NEW PT(0,550,0,0,0); -- ARE POINTS TAUGHT
URPT: NEW PT(100,550,0,0); -- IN MANIPULATOR COORDINATES

 - ********- ,-****** **- -***-L*** ** ***-,-,-** ***** -
REG1: STATIC REGION(LLPT,ULPT,LRPT,URPT,4,4,5,5);--4x5 REGION
CTR1:STATIC COUNTER;
CTR2:STATIC COUNTER;
MAIN: SUBR;

MOVE: SUBR(X,Y); -- MOVE TO A POINT WITHIN A REGION
XMPT: NEW PT(X,Y,0,0);

XMPT_DN: NEW PT(X,Y,-100,0);
XMOVE(REG1,XMPT);
XMOVE(REG1,XMPT_DN);
END; -- END MOVE SUBR

*** BEGINNING OF PROGRAM ***
SETC(CTR1,0); - - INITIALIZE COUNTERS
SETC(CTR2,0); - - THAT ARE THE REGION MOVE POINTS

LOOP1: TESTC(CTR1,6,NEXT1); - - END OF ROW ?
MOVE(CTR1,CTR2); - - MOVE TO POINT IN REGION
INCR(CTR1);
BRANCH(LOOP1);

NEXT1: TESTC(CTR2,4,NEXT2); - - LAST COLUMN ?
SETC(CTR1,0); - - RESET ROW COUNTER
INCR(CTR2); - - INCREMENT COLUMN COUNTER
BRANCH(LOOP1);

NEXT2:
END;
**

The main logic of the program consists of two loops, one nested within
the other. Another approach would be to use expressions. Instead of
declaring CTR1 and CTR2 as counters, three counters CTR, ROW and COL
would be required. The main loop of the progr'am could then be replaced
with:

*** BEGINNING OF PROGRAM ***

SETC(CTR,O);
LOOP: SETC(ROW,TRUNC(CTR/6));

SETC(COL,CTR-6*ROW);
MOVE(ROW,COL);
INCR(CTR);
COMPC(CTR LT 30,LOOP);

-- INITIALIZE COUNTERS
-- FETCH ROW OF REGION
-- FETCH COL OF REGION
-- MOVE TO POINT IN REGION

-- LOOP UNTIL DONE

END;

4-86 58X7338

Host Communications

AML/Entry supports controllers equipped with enhanced communications. A
few concepts added to AML/Entry allow host communications and data
reporting to become more effective.

Host data drive is a concept where the robot controller is programmed to
perform a generic task. The details of that task are determined by a
host computer. The information is transferred from the host to the
robot controller. For example, the controller is programmed to perform
a series of part insertions on a card. The host supplies the
coordinates of the insertion locations on a per card basis. In this
manner, one robot program is used to produce a large number of different
assemblies.

By the use of controller-initiated communications, you are able to
control program execution. Controller-initiated communication is used
to change counters or points, or groups of data. By changing counter
variables, it is possible to change points, movement control statements,
sensor commands, and any other structure that uses integer or real
variables.

Command I Description

GET I Controller Requires Data
PUT I Controller Wants to Send Data

GET Command

This command indicates to the host that the controller re uires specific
data. The controller initiates a data drive operation, and the
-afirtication program waits thirty ds for a response from the host
computer. If there ' response, the controller stops execution and
the TE light on the control panel lights up (indicating a Transmission
trror).

GET is used to get a
within a group, and a
c

•

ounters and" points
communicates with the
Format of the command

single counter, a single point, a single counter
single figTrir—Within a grou7insk well asgragt—tf

For further information on how the host
controller, refer to Chapter 8, "Communications."
is outlined below.

GET(counter_name); -- requests the host to submit value
-- for counter name

GET(group_name); -- gets a value from the host
-- for each element in the group

Note: If the controller is off-line, the communications cable
not attached, or the DSR signal inactive, then a DE will occur
when a GET or PUT instruction is performed. The error code will
be lE - Communications not established (unable to GET/PUT). If
the program is started by using the operator panel, the controller
has to be in the off-line state. Thus if one of the first

Chapter 4. Learning the AML/Entry Language 4-87

instructions is a GET or PUT, then a DE will occur. Either use
the CSTATUS command to ensure communications are established, or
start the application remotely using Comaid (see
Chapter 8, "Communications").

An example of a GET command is outlined below in a program fragment.

PT1:NEW PT(650,0,0,0);
PT2:NEW PT(0,650,0,0);
C: STATIC COUNTER;
P: STATIC GROUP(PT1,PT2);

GET(C); -- get value for counter
GET(P); -- get values for two points

Note: The GET for the group P will only change the points of the
group. The values for PT1 and PT2 will remain unchanged.

PUT Command

This command indicates to the host that the controller wants to send
specific data.

The controller initiates a data report operation and the application
program waits for the host to respond. If no response is received after
three secondp, the controller re-transmits the request. After two
re-tries (nine seconds), the controller stops program execution and the
TE light comes on.

PUT is used to send a single counter, a4ingle_point, a single counter
within a group, and a single point within a group as well as groups of
coup errand points. Format of the command is outlined below.

PUT(name); -- requests the host to accept value
-- for object 'name'

An example of a PUT command is outlined below in a program fragment.

PT1:NEW PT(650,0,0,0);
PT2:NEW PT(0,650,0,0);
C: STATIC COUNTER;
P: STATIC GROUP(PT1, PT2);

PUT(C); -- SEND VALUE FOR COUNTER
PUT(P); -- SEND VALUES FOR TWO POINTS

Note: If the controller is off-line, the communications cable
not attached, or the DSR signal inactive, then a DE will occur
when a GET or PUT instruction is performed. The error code will
be lE - Communications not established (unable to GET/PUT). If
the program is started by using the operator panel, the controller
has to be in the off-line state. Thus if one of the first
instructions is a GET or PUT, then a DE will occur. Either use
the CSTATUS command to ensure communications are established, or
start the application remotely using Comaid (see
Chapter 8, "Communications").

4-88 58X7338

An example of a GET and PUT command is outlined below in a program
fragment.

PUT(INDEX);
GET(LLPT);
PMOVE(LLPT);
GET(P(3));
PMOVE(P(3));

-- SEND NEW VALUE OF INDEX TO HOST
-- REQUEST NEW VALUE OF LLPT FROM HOST
-- MOVE TO NEW POINT
-- CHANGE THE VALUE OF P(3)
-- MOVE TO NEW POINT

Variable Identification

Information regarding variable(s) is passed to the host during GET or
PUT communication sequences. This information is the variable number
specified by the AML/Entry compiler, followed by the count of the number
of consecutive variables being passed. AML/Entry refers to each
variable by a unique number assigned by the compiler.

XREF Program

The XREF program supplies additional information that is useful when the
host is using communications. See "XREF Program" on page 2-34 for a
discussion of how to begin the XREF program.

A program example is shown below, followed by an example of the output
of the XREF program.

**
1 POINT1: NEW PT(0,500,0,0); --DECLARATION OF POINTS
2 POINT2: NEW PT(0,600,0,0);
3 POINT3: NEW PT(50,500,0,0);
4 POINT4: NEW PT(0,500,-50,180);
5 ROWS: STATIC GROUP(POINT1,POINT2,POINT3,POINT4); --GROUP OF
6 ROW: STATIC COUNTER; --POINTS
7 MAIN: SUBR;
8 SUB1: SUBR(X);
9 DECR(X); --DECREMENT COUNTER

10 END;
11 SETC(ROW,1); --SET COUNTER TO 1
12 SUB1(ROW);
13 END;
	***4

When the XREF program is run against the previous program, the following
output will be displayed on the screen.

Chapter 4. Learning the AML/Entry Language 4-89

TYPE NAME VAR # SIZE FTYPE/GSIZE

POINT P1 34 4
POINT P2 38 4
POINT P3 42 4
POINT P4 46 4
GROUP-PT ROWS 50 16 4
COUNTER ROW 66 1
SUBR MAIN 84 0
SUBR SUB1 88 1
FORMAL X 67 1 COUNTER
END SUB1 99 0
END MAIN 115 0

This output provides you with the information necessary to use host
communications. The NAME field provides you with the name of the
variable from the program. VAR # is the address of the variable in
controller memory and SIZE is the number of variables associated with
the name.

If TYPE is FORMAL, FTYPE/GSIZE is
parameters. If the TYPE is GROUP,
associated with a GROUP.

the data type assigned to formal
FTYPE/GSIZE is the number of bytes

In the below example, the controller sends 34 as the variable number and
sends 4 as the number of variables r equested during the GET transaction.

GET (P1);

Pallet and Region Listings

Using GET and PUT in an AML/Entry program allows controller initiated
data drive of counters, points, and groups. However the host (IBM
PC/XT/AT, 5531 Industrial Computer) can also initiate a data-drive
transfer. This allows any variable in controller memory to be changed,
including regions and pallets. (See Chapter 8, "Communications" for how
to perform host initiated data drive). Regions use 20 controller
variables, pallets use 15. The listing produced by XREF indicates each
of the components that comprise regions and pallets. The following is a
sample listing for a program that contains one pallet and one region.

TYPE NAME VAR # SIZE FTYPE/GSIZE

PALLET PAL 34 15
-PT LL 34 4
-PT LR 38 4
-PT UR 42 4
-CTR Parts/Row 46 1
-CTR # Parts 47 1
-CTR Cur Part-1 48 1

REGION REG 49 20
-PT LL 49 4

4-90 58X7338

-PT UL 53 4
-PT LR 57 4
-PT UR 61 4
-CTR LS Len 65 1
-CTR RS Len 66 1
-CTR Top Len 67 1
-CTR Bot Len 68 1

SUBR MAIN 123 0
END MAIN ' 124 0

The TYPE and NAME fields together indicate the components of regions and
pallets. In the above example, The lower right point of the pallet
begins at variable number 38 and has a length of 4. The bottom length
of the region begins at variable number 68 and has a length of 1. Thus
to change a pallet or region using COMAID (host initiated data drive),
one would use the enhanced listing to locate the particular component
that required changing.

Note that the last component of a pallet is the current part MINUS 1.
Thus if COMAID is used to read variable number 48 and it has a value of
5, the current part of the pallet is actually 6 (because 5 is the
current part number minus 1). Likewise, if one wanted to set the
current part number to 10, he would data drive 9 to variable number 48.

Chapter 4. Learning the AML/Entry Language 4-91

•-1

4-92 58X7338

CHAPTER 5. WRITING AML/ENTRY PROGRAMS

In this chapter you will be given two AML/Entry programs that perform
the same application. The application is relatively simple, and is
intended that way so you may concentrate on the programming style
illustrated. This simple program does an easy pick and place operation
with no external inputs. A complex program using the full power of
AML/Entry Version 4 to assemble small batches of many different cards
using data downloaded from a host computer is shown following this
simpler example. Your application will probably fall somewhere in
between these example applications. Concentrate on the program
structure instead of the application itself.

GOOD PROGRAM STRUCTURE

These paragraphs provide information and recommendations on programming
techniques that help you create programs that can be easily written and
updated.

• Use Declarations Where Possible

Use declarations where possible for the points and constants of the
program. This allows you to refer to the point by a name through
out the program making the program easier to read. When the point
is taught you only have to put the location data at one place in the
program. In addition, a change to a taught point or a constant
requires that you make the change only once at the declaration
statement.

• Use Subroutines Where Tasks are Repeated

Use subroutines where tasks are repeated many times in your program.
The subroutines may consist of only three or four executable
statements, but typing in the subroutine name is easier and faster
than typing each line over again. In addition, storage space is
saved at the controller when using subroutines.

• Use Indentations

Use indentations to allow the program to be read easier.

Chapter 5. Writing AML/Entry Programs 5-1

• Use Names With a Meaning

When using names, attempt to use names that have a meaning you can
recall easily. Use the underscore (_) character to separate words
in the name if necessary. Meaningful names usually are longer and
require a little more time to input, but you will be glad that you
spent the extra time when the program needs to be modified.

• Use Blank Lines in the Program

Leave blank lines in the program as viewed in the editor. The blank
space allows easier reading of the program.

• Use Comments Throughout the Program

Use many comments throughout the program. A program that has been
put aside for a period of time may not even look familiar to the
developer when comments are not included.

• Use Expressions When Possible

In many cases, expressions can be used to simplify a program's
structure. A good example of this is shown in "Treating DI As
Integers" on page 4-56. By using an expression to hold the result
of several digital inputs, it is not necessary to perform many TESTI
commands. In general, it is better to use the arithmetic function
forms of CSTATUS, MSTATUS, TESTI, and TESTP instead of the command
forms.

5-2 58X7338

77

Trouble '-
lamp from
D06

Manipulator

WRITING A SIMPLE AML/ENTRY PROGRAM

The most important step in writing any program is understanding the
application. Try to understand the application as well as possible
before starting to program the application. Describing the application
using words and pictures can be very helpful.

Sample Application

The application appears as:

In the sample application, the manufacturing system picks up one block
at a time from a gravity chute and moves the block to a slot in a
carton. The carton is on a conveyor that moves the filled carton out
and a new one in. The chute has a switch that closes when a block is
ready for pickup by the gripper attached to the Z-axis of the arm. The
switch at the chute is wired to digital input point 4 (DI4) of the
controller.

The conveyor moves when the controller signals it through the relay at
digital output point 3 (D03). The controller tests for a switch closure
to determine if the conveyor has moved a carton into position. This
switch is connected to digital input point 5 (DI5).

If the conveyor does not move a carton to the proper location for
loading, the operator is signaled by a lamp controlled by digital output
point 6 (D06). The relay at DO point 6 closes causing the lamp to light.
The lamp is not part of the manufacturing system.

Chapter 5. Writing AML/Entry Programs 5-3

Application Program Comparison

This section shows two different methods of programming the carton
application. The first method uses no subroutines or palletizing; the
second program uses both. The difference in the programs is obvious, the
second program has a neater appearance and is easier to understand.

	******* FIRST EXAMPLE ******
1 NEWPROG: SUBR;
2 WRITE0(3,1);
3 DELAY(3.0);
4 TESTI(5,0,STOP);
5 WRITE0(3,0);
6 BRANCH(GO);
7 STOP: WRITE0(6,1);
8 WAITI(5,1,10);
9 WRITE0(3,0);

Page 1

10 GO: PMOVE(PT(-500,150,-150,0)); --PICKUP BLOCKS
11 WAITI(4,1,0); --WAIT FOR BLOCKS
12 ZMOVE(-250);
13 GRASP;
14 DELAY(1.0);
15 ZMOVE(0);
16 PMOVE(PT(-150,550,0,90)); --SLOT 1 OF CARTON
17 ZMOVE(-100);
18 RELEASE;
19 DELAY(1.0);
20 ZMOVE(0);
21
22 PMOVE(PT(-500,150,-150,0)); --PICKUP BLOCKS
23 WAITI(4,1,0); --WAIT FOR BLOCKS
24 ZMOVE(-250);
25 GRASP;
26 DELAY(1.0);
27 ZMOVE(0);
28 PMOVE(PT(-50,550,0,90)); -- SLOT 2 OF CARTON

page 2
29 ZMOVE(-100);
30 RELEASE;
31 DELAY(1.0);
32 ZMOVE(0);
33 PMOVE(PT(-500,150,-150,0)); --PICKUP BLOCKS
34 WAITI(4,1,0); --WAIT FOR BLOCKS
35 ZMOVE(-250);
36 GRASP;
37 DELAY(1.0);
38 ZMOVE(0);
39
40 PMOVE(PT(50,550,0,90)); --SLOT 3 OF CARTON
41 ZMOVE(-100);
42 RELEASE;
43 DELAY(1.0);
44 ZMOVE(0);
45 PMOVE(PT(-500,150,-150,0)); --PICKUP BLOCKS
46 WAITI(4,1,0); --WAIT FOR BLOCKS
47 ZMOVE(-250);
48 GRASP;
49 DELAY(1.0);
50 ZMOVE(0);
51
52 PMOVE(PT(-150,450,0,90)); --SLOT 4 OF CARTON
53 ZMOVE(-100);
54 RELEASE;
55 DELAY(1.0);
56 ZMOVE(0);
57 PMOVE(PT(-500,150,-150,0)); --PICKUP BLOCKS
58 WAITI(4,1,0); --WAIT FOR BLOCKS
59 ZMOVE(-250);
60 GRASP;
61 DELAY(1.0);
62 ZMOVE(0);
63
64 PMOVE(PT(-50,450,0,90)); --SLOT 5 OF CARTON
65 ZMOVE(-250);
66 RELEASE;
67 DELAY(1.0);
68 ZMOVE(0);
69 PMOVE(PT(-500,150,-150,0); --PICKUP BLOCKS
70 WAITI(4,1,0); --WAIT FOR BLOCKS
71 ZMOVE(-250);
72 GRASP;
73 DELAY(1.0);
74 ZMOVE(0);
75
76 PMOVE(PT(50,450,0,90)); --SLOT 6 OF CARTON
77 ZMOVE(-100);
78 RELEASE;
79 DELAY(1.0);
80 ZMOVE(0);
81 END;

Chapter 5. Writing AML/Entry Programs 5-5

Page 1	****** SECOND EXAMPLE ******
1 LL:NEW PT(-150,550,0,90); --PALLET POINTS
2 LR:NEW PT(50,550,0,90);
3 UR:NEW PT(50,450,0,90);
4 PPR:NEW 3;
5 N:NEW 6;
7 CARTON:STATIC PALLET(LL,LR,UR,PPR,N);
8 PICKUP:NEW PT(-500,150,-150,0);
9
10 -- ***** DI/DO DECLARATIONS ***********************
11
12 CONVEYOR_ON:NEW 3
13 BLOCK_HERE:NEW 4
14 CARTON_HERE:NEW 5
15 TROUBLE LAMP:NEW 6

-- CONVEYOR MOTOR CONTROL
-- BLOCK PRESENT SENSOR
-- CARTON PRESENT SENSOR
-- OPERATOR TROUBLE INDICATOR

16
17 -- ***** END OF DECLARATIONS BEGIN SUBROUTINES *****
18
19 NEWPROG:SUBR;
20 LOAD:SUBR;
21 PMOVE(PICKUP);
22 WAITI(BLOCK_HERE,1,0);
23 ZMOVE(-250);
24 GRASP;
25 DELAY(1.0);
26 ZMOVE(0);
27 END;
28 DROPOFF:SUBR;
29 ZMOVE(-100);
30 RELEASE;
31 DELAY(1.0);
32 ZMOVE(0);
33 END;
34 SETPART(CARTON,1);

--PICKUP BLOCKS
--WAIT FOR BLOCKS

--MOVEMENTS TO LOAD PALLET

--EXECUTION STARTS HERE
--TEST FOR BLOCK

--LOAD BLOCK

--MOVE TO CARTON
--DROP OFF BLOCK

--TEST FOR FULL CARTON

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 END;

NEXT:WRITEO(CONVEYOR_ON,1);
DELAY(3.0);
TESTI(5,0,STOP);
WRITEO(CONVEYOR_ON,0);
BRANCH(GO);

STOP:WRITEO(TROUBLE LAMP,1);
WAITI(CARTON RERE ,1,10);
WRITEO(CONVEOR_ON,0);

GO:
LOAD;
GETPART(CARTON);
NEXTPART(CARTON);
DROPOFF;
BREAKPOINT;
COMPC(TESTP(CARTON) NE 1,G0);
BRANCH(NEXT);

5-6 58X7338

WRITING A COMPLEX AML/ENTRY PROGRAM

An example of how a complex application program is designed and writte
using AML/Entry is provided in this section. It demonstrates th
ability of this language in the area of data drive, error recovery, an
logical organization of task activity. The first step in writing an
application program is understanding the application. The more comple
the application the more important it is to spend time understanding th
application.

Main Application Task

The main task of this program is to insert components into circui
boards. Many different circuit boards are required to be assembled i
small batches at varying times during the day. Because of this, th
data that describes the position of the components on each of thes
circuit boards is to be stored on the host computer and sent to th
controller before each batch is started.

Printed Circuit Card

Components are inserted into a printed circuit card. The card is place
in the production environment by other equipment (probably carried int
place by a conveyor to come to rest at a precision stop).

The card is defined as a REGION. This allows the points on the card t
be described with respect to the card itself, not in manipulato
coordinates. Component insertion locations are obtained directly from
computer-assisted design data base contained in a host computer.

•

Manipulator Gripper

For this application, the manipulator is fitted with a special grippe
with two active modes, opening and closing.

There are two sensors to determine whether the gripper is fully opene
or fully closed. Gripper can be relaxed by having neither state activ
(it is not opening or closing). It also uses a parts presence senso
(LED-photodetector pair), and a force sensor that senses for
over-pressure condition in the Z direction. If a part does not inser
properly, the force sensor is used to prevent the card from bei
destroyed.

Component Feeders

The program manages four different types of components, supplied throug
four individual feeders.

Each component is supplied from a feeder that has one digital input (DI)
and one digital output (DO) point associated with it.

Chapter 5. Writing AML/Entry Programs 5-7

The digital output (DO) point drives an actuator on the feeder that
releases one component at a time from the supply bin. The component
comes to rest at the feeder part stop location (a taught point). The
feeder parts stop positions the component where the manipulator can pick
it up.

The DI point is used to sense if a component is present at the feeder's
part stop location. If the DO point has been pulsed to release a
component and the DI point fails to sense it within the correct time
either the feeder is out of parts or it has jammed. When this condition
occurs the operator is notified.

Interaction with a Host Computer

Controller interacts with the host computer to control the assembly
process, as outlined below.

1. Digital Input/Digital Output (DI/DO)

• When the points are loaded into the controller, the host signals
the controller using a DI point.

• The controller uses DO points to inform the host of the
application's status.

2. Host-Initiated Communication

• The host loads the component insertion location points into the
controller before the application is started.

3. Controller-Initiated communications

• The application program queries the host for part type and
insertion location.

Application Flow

The program uses host communications to control an application program.

1. The host computer first uses host-initiated communications to send
the controller the points that define the different printed circuit
card locations to be used during the population of the current
printed circuit card.

2. These points are obtained from the computer-assisted design data
base and are defined with respect to the printed circuit card, not
the manipulator work space.

3. When the host completes sending the points to the controller, it
uses DI/DO to inform the controller to start the insertion process.

4. After the application program starts, the AML/Entry program queries
the host for part (component) type and component insertion location.

5. The part type is a number from 1 to 4 representing the feeder that
holds the component.

6. The insertion location is a number from 1 to 10 that specifies which
insertion location points to use.

7. The program interacts with an operator to signal various error
conditions.

8. The operator may also suspend all motion. This allows the operator
to load feeders or clear jams that do not require entry to the work
space. In practice, an operator interface panel usually has several
lights to display status (from the DO lines) as well as switches for
input through DI points.

•
Chapter 5. Writing AML/Entry Programs 5-9

Define Global Data Types

Now that the application has been described you can start to design your
application program. The first step in an application program is
defining the global data types.

Taught Points

It is a good idea to put any global taught points at the beginning of
the program. This makes it easier to find the points when they are
taught. For consistency's sake the other data needed to define the
cards and feeders are placed in this area also. The points are
initially input with a value of zero because they have not been taught
yet.

-- Taught Points to Define Location of Card

CARD_UL: NEW PT(0,0,0,0);
CARD_LL: NEW PT(0,0,0,0);
CARD_UR: NEW PT(0,0,0,0);
CARD_LR: NEW PT(0,0,0,0);

-- Other Data to Define Card

CARD_LS: NEW 0;
CARD_RS: NEW 0;
CARD_TOP: NEW 0;
CARD BOT: NEW 0;

--card's upper-left corner
--card's lower-left corner
--card's upper right corner
--card's lower-right corner

--card's left side length
--card's right side length
--card's top length
--card's bottom length

-- Taught Points for Fixture Locations

FEEDER1: NEW PT(0,0,0,0);
FEEDER1Z: NEW 0.0;
FEEDER2: NEW PT(0,0,0,0);
FEEDER2Z: NEW 0.0;
FEEDER3: NEW PT(0,0,0,0);
FEEDER3Z: NEW 0.0;
FEEDER4: NEW PT(0,0,0,0);
FEEDER4Z: NEW 0.0;

Z MUST be zero here
This is Z coordinate.
Z MUST be zero here
This is Z coordinate.
Z MUST be zero here
This is Z coordinate.
Z MUST be zero here
This is Z coordinate.

5-10 58X7338

Digital Input and Digital Output

DI/DO points do not have to be included in the definitions as constants.
The actual numbers can be used in the AML/Entry commands. There are
several reasons that make it a good practice to give each DI/DO point a
name.

1. Giving each point a name that describes it's function makes the
program more readable.

2. The physical number of each point is defined by the hardware and how
it is attached to the controller. (If a signal that was supposed to
be attached to DI number 3 is actually attached to DI number 4, it
may be easier to change one line in the program than to change the
hardware.

HOST_START: NEW 03; --Host controlled point.
--if 0: inactive.
--if 1: start to populate a card.

OPER RETRY: NEW 04; --Signal from Operator: Retry.
--if 0: inactive.
--if 1: active.

OPER OK: NEW 05; --Signal from Operator: OK to move.
--if 0: OK.
--if 1: Do Not Allow Motion.

OPER ABORT:

	

	 NEW 06; --Signal from Operator: Abort the process.
--if 0: OK to proceed.
--if 1: abort the process.

GRIP OPND: NEW 07; --Gripper opened sensor
--if 0: not fully opened.
--if 1: fully opened.

GRIP CLSD: NEW 08; --Gripper closed sensor
--if 0: not fully closed.
--if 1: fully closed.

GRIP OBJS: NEW 09; --Gripper object sensor
--if 0: no object detected.
--if 1: object detected.

GRIP PRSS: NEW 10; --Gripper pressure sensor
--if 0: no undue pressure detected.
--if 1: too much force being exerted.

--parts presence sensor for the feeders

FEEDER1S:
FEEDER2S:
FEEDER3S:
FEEDER4S:

NEW 11; --Fixture 1 sensor.
NEW 12; --Fixture 2 sensor.
NEW 13; --Fixture 3 sensor.
NEW 14; --Fixture 4 sensor.

Chapter 5. Writing AML/Entry Programs 5-11!

HOST_AVAIL: NEW 03; --Signal to Host: manipulator is available.
--if 0: not available.
--if 1: available.

HOST_STRTD: NEW 04; --Signal to Host: process started.
--if 0: process is not active.
--if 1: card population in progress.

HOST CMPLT: NEW 05; --Signal to Host: process completed.
--if 0: process is not active or incomplete.
--if 1: card population completed.

GRIP OPEN: NEW 06; --Gripper open command
--if 0: no effect.
--if 1: open.

GRIP CLOSE: NEW 07; --Gripper close command
--if 0: no effect.
--if 1: close.

OPER ATTN: NEW 08; --Signal to Operator: Attention Required.
--if 0: no problem.
--if 1: problem encountered.

PBLM COMM: NEW 09; --Signal to Operator: Problem is Comm.
--if 0: no problem.
--if 1: problem encountered.

PBLM FXTR: NEW 10; --Signal to Operator: Problem is Fixture.
--if 0: no problem.
--if 1: problem encountered.

PBLM GRPR: NEW 11; --Signal to Operator: Problem is Gripper.
--if 0: no problem.
--if 1: problem encountered.

--parts release activator for the feeders
FEEDER1A: NEW 12; --Fixture 1 activator.
FEEDER2A: NEW 13; --Fixture 2 activator.
FEEDER3A: NEW 14; --Fixture 3 activator.
FEEDER4A: NEW 15; --Fixture 4 activator.

5-12 58X7338

You may want to give names to numbers that are used many times in your
program. If you give these special numbers a descriptive name it will
increase the readability of your program. In this program the name ON
is given the value 1 and OFF the value O. This allows you to use the
names ON and OFF when using the DI/DO points instead of 1 and 0. The
program also assigns a generic point to the name P, allowing a GROUP of
points "P" to be defined further on in the program.

ON:
OFF:
P:

NEW 1;
NEW 0;
NEW PT(0,0,0,0); --generic point

Constants•

Variables

The last global declarations in this program are the variables that are
used throughout the program. Any variables that are used withi n
specific subroutines are declared as local variables within the
individual subroutines.

INIT FLAG: STATIC GROUP
(OFF); -- A counter initialized to OFF.

-- Will be set to ON after program has
-- been initialized.

FEEDERSL: STATIC GROUP --locations of feeders
(FEEDER1, FEEDER2, FEEDER3, FEEDER4);

FEEDERSZ:

	

	 STATIC GROUP --Z height of feeders
(FEEDER1Z, FEEDER2Z, FEEDER3Z, FEEDER4Z);

FEEDERSA:

	

	 STATIC GROUP --actuator DO point for feeders
(FEEDER1A, FEEDERSA, FEEDER3A, FEEDER4A);

FEEDERSS:

	

	 STATIC GROUP --sensor DI point for feeders
(FEEDER1S, FEEDER2S, FEEDER3S, FEEDER4S);

CARD: STATIC REGION(CARD_LL,CARD_UL,CARD_LR, CARD_UR,
CARD_LS,CARD_RS,CARD_BOT,CARD_TOP);

LOCATIONS: STATIC GROUP --component insert locations
(P,P,P,P,P,P,P,P,P,P);

--location points are relative to card

LOC TO CARD: STATIC COUNTER;--will contain host specified data-
--z distance from "location" to "card"

•
INSTRS: STATIC GROUP

(0,0);
--insertion instructions
--part-type , insertion location

Chapter 5. Writing AML/Entry Programs 5-11

Define the Global Subroutines

After you have defined all the global data for the program you need to
define the global subroutines to used in the program. Careful use of
global subroutines can greatly enhance the program.

Analyse the application to see if any actions are repeated several
times. These actions should be put into subroutines. When you want to
do the action you only have to call the subroutine. Using subroutines
also breaks the program into small easy to understand blocks. The
example program makes extensive use of subroutines, each of the
subroutines is described below.

Utility Subroutines

There are four subroutines used by the program that can be called
utility subroutines. These subroutines do simple tasks that are needed
by many of the other subroutines in the program. These subroutines are:

• WAIT_TOGGLE (PORT)

This subroutine waits for the specified DI port to be toggled
from OFF to ON to OFF. It can be used any time it is necessary
to wait for an input such as the operator pressing a button.

--**--
Subroutine: WAIT TOGGLE(PORT);

1) Wait for the selected port to be toggled- that is,
it must be off, then pulse on, then return to off.

This routine will wait forever. --
--**--

WAIT_TOGGLE : SUBR(PORT);
WAITI(PORT, OFF, 0); --insure OFF
WAITI(PORT, ON, 0); --wait for ON
WAITI(PORT, OFF, 0); --and OFF again
END;

5-14 58X7338

• PULSE (PORT,TIME)

This subroutine pulses the specified DO port ON then OFF. The
time period for each step of the toggle is also specified. This
subroutine can be used any time it is necessary to send a signal
to an external piece of equipment.

--**--
Subroutine: PULSE(PORT,TIME);

-- 1) Pulse the selected port from OFF to ON to OFF.
The pulse will have a duty cycle specified by TIME. --

--**--

PULSE:SUBR(PORT,Y);
WRITEO(PORT, ON);
DELAY(Y);
WRITEO(PORT, OFF);
END;

• PROBLEM (PORT)

This subroutine notifies an operator of a problem within the
system. An error indicator is lighted along with the specified
DO point to indicate the nature of the error. Notice that this
subroutine uses the subroutine WAIT TOGGLE to wait for the
operators response to the problem. When the operator has fixed
the problem the error indicators are turned off and control is
returned to the caller.

--**--
Subroutine: PROBLEM(PORT);

-- 1) Signal the operator that a problem has been encountered. --
-- 2) Wait for operator to signal OK to retry. -
-- 3) Reset problem indicators. --
--**********************************4***************************--

•

PROBLEM:SUBR(X);
WRITEO(OPER_ATTN, ON);
WRITEO(X, ON);
WAIT_TOGGLE(OPER_RETRY)
WRITEO(OPER_ATTN, OFF)
WRITEO(X, OFF);
END;

--ask for operator's attention
--indicate where problem is

; --wait for retry signal
; --turn off signals

Chapter 5. Writing AML/Entry Programs 5-15

• DROP PART (X)

This subroutine is used to drop a part from the feeder into the
fixture where the manipulator can pick it up. This subroutine
also checks for feeder jams. If a jam is detected, it is
reported to the operator using the PROBLEM subroutine.

--***--
Subroutine: DROP PART(X)

Drop a part at feeder X into the jig.

1)Activate the feeder DO point.
2) Wait for part presence sensor to be active,

if not active in 1.5 second, then it must
-- be jammed, so signal operator. --
--******************************4**********************--

DROP PART:SUBR(X);
TRY:

PULSE(FEEDERSA(X),.2); --pulse the part release port
WAITI(FEEDERSS(X), ON, 1.5, ERR);
BRANCH(OK); --allow 1.5 sec. for part

ERR:
PROBLEM(PBLM_FXTR); --report problem
BRANCH(TRY); --retry

OK:
END;

5-16 58X7338

• Movement Subroutines

The example program uses four movement subroutines that are designed t
be used in place of the normal AML/Entry movement commands. Thes
subroutines provide a method of suspending all movement of th
manipulator arm based on the status of the OPER_OK digital input point
This allows the operator to stop the manipulator movement by pressing
button. Notice that the subroutines wait for an ON (1) condition befor
allowing motion to continue. This makes the sensing "failsoft", meanin
that if a wire breaks motion stops. If the subroutines waited for a
OFF (0) a broken wire would allow motion to continue.

--**-
Subroutines:

PPMOVE(POINT), ZZMOVE(POINT), XXMOVE(POINT), DDZMOVE(DELTA)

The following four subroutines are used instead of the -
standard move commands. They allow you to monitor a DI -
point to control movement. If OPER_OK is not ON the no -
movement is started, the subroutines wait forever.

--**-

PPMOVE:SUBR(X);
WAITI(OPER_OK, ON, 0); --OK to move?
PMOVE(X);
END;

ZZMOVE:SUBR(X);
WAITI(OPEROK, ON, 0); --OK to move?
ZMOVE(X);
END;

XXMOVE:SUBR(R,X);
WAITI(OPER_OK, ON, 0); --OK to move?
XMOVE(R,X);
END;

DDZMOVE:SUBR(X);
WAITI(OPER_OK, ON, 0); --OK to move?
DPMOVE(<0,0,0,X>);
END;

Chapter 5. Writing AML/Entry Programs 5-17!

5-18 58X7338

Gripper Subroutines

There are two subroutines to control the gripper. This allows you to
open and close the gripper using AML/Entry like statements. There is a
subroutine named OPENGR to open the gripper and one named CLOSEGR TO
close the gripper. Both gripper subroutines ensure that the gripper is
in the proper condition, not closing when an open command is given etc.,
before opening or closing the gripper. This prevents mechanical jams of
the gripper. OPENGR checks for a condition that prevents the gripper
from opening and uses the PROBLEM subroutine to report a jam if one
occurs.

--**********A.***--
-- Subroutine: OPENGR

Open the gripper

1)Activate gripper open DO point.
2)Wait for open sensor to be active,

if not active in 1 second, then it must
-- be jammed, so signal operator. --
--**--

OPENGR:SUBR;
TRY:

WRITEO(GRIP_CLOSE, OFF); --insure not trying to close
WRITEO(GRIP_OPEN, ON); --try to open
WAITI(GRIPOPND, ON, 1, ERR); --give 1 sec. to open
BRANCH(OK);

ERR:
PROBLEM(PBLM_GRPR); --report problem
BRANCH(TRY); --retry

OK:
END;

--**--
Subroutine: CLOSEGR

Close the gripper

-- 1) Activate gripper close DO point. --
--**--

CLOSEGR:SUBR;
WRITEO(GRIP_OPEN, OFF); --insure not trying to open
DELAY(.1);
WRITEO(GRIP_CLOSE, ON); --try to close
END;

Parts Handling Subroutines

There are two parts handling subroutines used in the example. One
subroutine GET_PART(PART_TYPE) is used to pick up parts from the
specified feeder. The other subroutine PUT_PART(PART_PLACE) is used to
place the parts in the circuit board at the specified location. Both of
these subroutines make extensive use of the subroutines described
earlier. Making use of the subroutines allows the parts handling
subroutines to do complex actions without being complex themselves.
Using subroutines as building blocks allows you to take a step by step
approach to the application.

• GET_PART(PART_TYPE)

This subroutine is used to pick up the part from the part
specified in PART_TYPE. PART_TYPE contains the number of the
part to pick up and is used as an index into the variables
FEEDERSL and FEEDERSZ. These variables have been previously
defined to be groups which allow PART_TYPE to be used as an
index into the groups. If PART_TYPE has the value 3 then the
third element of each of the variables is used. Notice that
almost every statement in the GET_PART routine is the name of a
previously defined subroutine.

Chapter 5. Writing AML/Entry Programs 5-19

--***--
Subroutine: GET PART(PART TYPE)

Get the part specified by feeder number

1) Insure Z-stroke is fully up.
2) Insure gripper is open.
3) Move to the proper location.
4) Release a component into Fixture's jig.
5) Move to proper Z height.
6) Grasp the part.
7)Move to Z fully up.
8) Make sure part was grasped.

--***--

--insure Z up
--open gripper

); --move over the feeder
--activate feeder
--(release a part)

); --go to proper height
--close gripper
--move z up to safe height

ON, OK); --ok if there
OFF); --relax the gripper

GET_PART:SUBR(X);
TRY:

ZZMOVE(0);
OPENGR;
PPMOVE(FEEDERSL(X)
DROP PART(X);

ZZMOVE(FEEDERSZ(X)
CLOSEGR;
ZZMOVE(0);
TESTI(GRPR OBJS,
WRITEO(GRPR_OPEN,
WRITEO(GRPR_CLOSE, OFF);
PROBLEM(PBLM_GRPR);
BRANCH(TRY);

OK:
END;

--inform operator
--try again

• PUTPART(PART_PLACE)• The PUT PART subroutine uses the same structure as the GET PART
subroutine. That is, PART PLACE contains an index into
variables defined as groups. PUT PART defines a local variable
named C to be used only within this subroutine.

PUT_PART moves to the insertion location using the XXMOVE
subroutine. Because XXMOVE uses region coordinates the move is
with respect to the card. After the manipulator moves to the
insert location, a guarded move is made to insert the parts into
the card. If the gripper pressure sensor transfers during the
insertion, a problem is reported to the operator. After the
operator clears the jam the insertion process is retried.

--***--
Subroutine: PUT PART(PART PLACE)

Insert the part specified by location number

1) Move to the proper location.
2) Insert the part.

- turn gripper force sensor guarding on
- move down until tripped or inserted

3) Move to Z fully up.
4) Make sure part was released.

--***--

PUT_PART:SUBR(X);
C: STATIC COUNTER; --local variable for move condition

•

TRY:
XXMOVE(CARD, LOCATIONS(X));

PAYLOAD (11);
GUARDI(GRIP_PRSS, ON);
DDZMOVE(LOC_TO_CARD);
MSTATUS(C);

NOGUARD;
PAYLOAD(0);
OPENGR;
ZZMOVE(0);
COMPC(C<>0, PROBLEM);
TESTI(GRPR_OBJS, OFF, OK);

PROBLEM:
WRITEO(GRPR_OPEN, OFF);
WRITEO(GRPR_CLOSE, OFF);
PROBLEM(PBLM_GRPR);
BRANCH(TRY);

OK:
END;

--move over the card location
--location is relative to card!
--(location z is above card-
--this move only positions, it
--does not insert the part)
--set to slow for guarded move
--guard from over-pressure
--insert the component
--query the motion complete code
--save code in counter C
--disable motion guard
--reset to switch setting
--open gripper
--insure Z up
--problem if stopped by guard
--was part in fact inserted

--relax the gripper

--inform operator
--try again

Chapter 5. Writing AML/Entry Programs 5-21

Initialization Subroutine

The example program uses a subroutine to initialize the external outputs
and determine the status of the communications lines. The subroutine
uses the variable INIT_FLAG to flag whether initialization is needed.
INIT_FLAG is originally set to OFF in the variable declarations, when
the INITIA subroutine has finished INIT_FLAG is set to ON. Every time
INITIA is called it checks the value of INIT_FLAG. If INIT FLAG is ON a
branch is made to the exit. In this way INITIA is only executed the
first time it is called.

If INIT_FLAG has the value OFF the
digital outputs are reset. After
communications status is checked.
incorrect the operator is informed
communications status is correct.

initialization is executed and the
the output points are reset, the
If the communications status is
and the program loops until the

5-22 58X7338

--**-.

Subroutine: INITIA

1) Test the init_flag. If clear, perform the initialization,
otherwise exit.

-- 2) Initialization consists of:
a) set the initialization flag
b) initialize DO lines
c) insure communications available

if not - signal operator, wait for retry
d) tell host we are available

--*** *********--

INITIA:SUBR;
COMM_STAT: STATIC COUNTER;
COMM_AVAIL: NEW 15;

--holds status of comm. system
--all comm parameters active
--(CTS on, online, XONed state)

TESTC(INIT_FLAG(1), ON, EXIT); --exit if already initialized

--initialize DO
WRITEO(HOST_STRTD, OFF);
WRITEO(HOST_CMPLT, OFF);
WRITEO(HOST_AVAIL, OFF);
WRITEO(OPER_ATTN, OFF);
WRITEO(PBLM COMM, OFF);
WRITEO(PBLM—FXTR, OFF);
WRITEO(HOST:AVAIL,ON);
DELAY (2) ;
--read comm status, wait for

LOOP:
CSTATUS(COMM STAT);
TESTC(COMM_STAT, COMM AVAIL,
PROBLEM(PBLM_COMM);
WAIT_TOGGLE(OPER_RETRY);
BRANCH(LOOP);

OK:
SETC(INIT_FLAG(1));

EXIT:
END;

-- tell the host we are ready
-- give the host time to respond

good conditions

--determine communication status
OK);
--identify problem

--and retry

--set flag to indicate initialized

Chapter 5. Writing AML/Entry Programs 5-231

The Main Subroutine

The final step in writing the program is to write the main subroutine.
The MAIN subroutine contains the logic to control the interaction with
the host computer and the movement of the manipulator. Because of
extensive use of subroutines the MAIN subroutine is short and easy to
understand.

The first step in the MAIN subroutine is to call the INITIA to ensure
the condition of the manipulator is known and that communications with
the host computer is correct. The INITIA subroutine is called every
time the MAIN subroutine is executed however INITIA is designed to
execute only the first time it is called. After the first time INITIA
is called it returns without doing anything.

The controller then waits for the host to signal that it has loaded the
correct data into the controller. The controller then signals the host
that execution has started using the HOST_STRTD digital output pqint.
The controller then uses the GET command to query the host for the
component number and insertion information. The controller then inserts
the components as instructed by the host until the host signals that all
the components have been inserted or the operator stops the process.
When all the components have been inserted the controller signals the
host using the HOST_CMPLT digital output point and restarts the MAIN
subroutine.

5-24 58X7338

--**--
MAIN PROGRAM LOGIC

Check initialization.

Perform the component insert process.

▪ 1) Wait for Host's start signal.
The line must be pulsed.

2) Acknowledge Host
a) Turn 'completed' signal off
b) Turn 'started' signal on

3) GET the Parts Insertion Locations from the host
These points are defined with respect to the card!

4) Run the insertion loop:
a) Read instructions from the host:

part type and insertion location
b) Fetch the needed component from the proper feeder
c) Insert into card at proper location
d) advance instruction pointer,

Run loop until all parts inserted.
or until halted by Host

-- 5) Signal Host that the process is finished. --
--**--

MAIN: SUBR;
INITIA;
WAIT_TOGGLE(HOST_START);
WRITEO(HOST_CMPLT, OFF);
DELAY(.2);
WRITEO(HOST_STRTD, ON);

GET(LOC_TO_CARD);
LOOP:

GET(INSTRS);

COMPC(INSTRS(1) = 0, DONE);
TESTI(OPER ABORT, ON, ABORT);
GET_PART(INSTRS(1));
PUT PART(INSTRS(2));
BRANCH(LOOP);

ABORT:
ZZMOVE(0);
WAIT_TOGGLE(OPER_RETRY);

DONE:
WRITEO(HOST_CMPLT, ON);
WRITEO(HOST_STRTD, OFF);
END;

--start of main program
--do initialization
--wait for Host start signal
--process not completed yet
--insure CMPLT off before STRTD
--indicate process is starting

--the process loop
--z height of "location" data

--get instructions from host
--instructions is 2 counters:
-- 1st tells what part type
-- 2nd tells where to put on card
--part-type=0 means all done
--OK with Operator?
--get the part
--insert it

--move up for safety
--wait for operator to signal

--indicate done
--no longer active
-- end of program cycle

Chapter 5. Writing AML/Entry Programs 5-25

GLOBAL TAUGHT POINTS AND THEIR ASSOCIATED DATA

-- Taught Points to Define Location of Card

CARD_UL: NEW PT(0,0,0,0);
CARD LL: NEW PT(0,0,0,0);
CARD_UR:' NEW PT(0,0,0,0):
CARD_LR: NEW PT(0,0,0,0);

-- Other Data to Define Card

CARD_ LS: NEW 0;
CARD'RS: NEW 0;
CARD_TOP: NEW 0;
CARD_BOT: NEW 0;

-- Taught Points for fixture

--card's
--card's
--card's
--card's

--card's
--card's
--card's
--card's

Locations

upper-left corner
lower-left corner
upper right corner
lower-right corner

left side length
right side length
top length
bottom length

FEEDER1:
FEEDER1Z:
FEEDER2:
FEEDER2Z:
FgEDER3•
FEEDER3Z:
FEEDER4•
FEEDER4Z:

BEN PT(0,0,0,0);
NEW 0.0;
NEW P7(0,0,0,0);
NEW 0.0;
NEW PT(0,0,0,0);
NEW 0.0;
NEW PT(0,0,0,0);
NEW 0.0;

Z MUST be zero here
-- This is Z coordinate.

Z MUST be zero here
This 11:• coordinate.
Z MUST be zero here •

-- This is Z coordinate.
Z MUST be zero here

-- This is Z coordinate.

-- NOTE: these points have not yet been taught.

DI POINT DEFINITIONS

HOST START: NEW 03;

OPER_RETRY: NEW 04;

OPER_OK: NEW 05;

OPER ABORT: NEW 06;

CRIP_OPND: NEW 07;

GR1P_CLSD: NEW 08;

GRIP_OBJS: NEW 09;

GR1P_PRSS: NEW 10;

--parts presence sensor
FEEDER1S: NEW 11;
FEEDER2S: NEW 12;
FEEDER3S: NEW 13;
FEEDERIS: NEW 14;

HOST AVAIL: NEW 03;

HOST_STRTD: NEW 04;

HOST_CMPLT: NEW 05;

CRIP_OPEN: NEW 06;

GRIP_CLOSE: NEW 07;

--Host controlled point.
--if 0: inactive.
--if 1: start to populate a card.

--Signal from Operator: Retry.
--if 0: inactive.
--if 1: active.
--Signal from Operator: OK to move.
--If 0: OK.
--if 1: Do Not Allow Motion.
--Signal from Operator: Abort the process.
--if 0: OK to proceed.
--if 1: abort the process.

--Gripper opened sensor
--if 0: not fully opened.
--if 1: fully opened.
--Gripper Closed sensor
--if 0: not fully closed.
--If 1: fully closed.
--Gripper object sensor
--if 0: no object detected.
--If 1: object detected.
--Gripper pressure sensor
--if 0: no undue pressure detected.
--if 1: too much force being exerted

--Signal to Host: manipulator is available.
--if 0: not available.
--if 1: available.
--Signal to Host: process started.
--If 0: process is not active.
--if 1: card population in progress.
--Signal to Host: process completed.
--if 0: process Is not active or incomplete.
--if 1: card population completed.

--Gripper open command
--if 0: no effect.
--If 1: open.
--Gripper close command
--if 0: no effect.
--if 1: close.

•

for the feeders
--Fixture 1 sensor.
--Fixture 2 sensor.
--Fixture 3 sensor.
--Fixture 4 r.

DO POINT DEFINITIONS

OPER_ATTN: NEW 08; --Signal to Operator: Attention Required.
--If 0: no problem.
--if 1: problem encountered.

PBLM_COMM: NEW 09; --Signal to Operator: Problem is Comm.
--if 0: no problem.
--if 1: problem encountered.

PBLM_FXTR: NEW 10; —.Signal to Operator: Problem is Fixture.
--if 0: no problem.
--if 1: problem encountered.

PBLM_GRPR: NEW 11; --Signal to Operator: Problem is Gripper.
--If 0: no problem.
--If 1: problem encountered.

--p.rts,release activator for the feeders
FEEDERSA: NEW 12; --Fixture 1 activator.
FEEDERSA: NEW 13; --Fixture 2 activator.
FEEDERSA: NEW 14; --Fixture 3 activator.
FEEDER4A: NEW 15; --Fixture 4 activator.

GLOBAL CONSTANTS

ON: NEW 1;
OFF: NEW 0;
P: NEW PT(0,0,0,0); --generic point

GLOBAL VARIABLES

INIT_FLAG: STATIC GROUP
(OFF); -- A counter initialized to OFF.

-- Will be set to ON after program has
-- been initialized.

FEEDERSL: STATIC CROUP --locations of feeders
(FEEDER1, FEEDER2, FEEDER3, FEEDERS);

FEEDERSZ: STATIC GROUP --Z height of feeders
(FEEDER1Z, FEEDER2Z, FEEDER3Z, FEEDER42);

FEEDERSA: STATIC GROUP --actuator DO point for feeders
(FEEDER1A, FEEDER2A, FEEDERSA, FEEOER4A);

FEEDERSS: STATIC GROUP --sensor DI point for feeders
(FEEDER1S, FEEDER2S, FEEDER3S, FEEDER4S);

CARD: STATIC REGION(CA00_LL,CARD_UL.CARD_LR, CARD OR,
CARD_LS,CARD_RS,CARD_BOT,CARD:TOP);

LOCATIONS: STATIC GROUP --component insert locations
(P.P.P.P.P.P,P.P,P.P);

--location points are relative to card

LOC_TO_CARD: STATIC COUNTER;--will contain host specified data-
--z from "location" to "card"

INSTRS: STATIC GROUP --insertion instructions
(0,0); --part-type , insertion location

—*se...
Subroutine: WAIT_TOGOLE(PORT);

1) Wait for the selected port to be toggled- that is,
It must be off, then pulse on, then return to off.

This routine will wilt forever.

WAIT_
0);

: SUBR(PORT);
WAIT1(PORT, OFF, ; --Insure OFF
WAIT1(PORT, ON, 0); --wait for ON
WAITI(PORT, OFF, 0); --and OFF again
END;

Subroutine: OULSE(PORT,TIME);

1) Pulse the selected port from OFF to ON to OFF.
The pulse will have a dutx cycle specified by TIME.

PULSE:SUBR(PORT,Y);
WRITEO(PORT, OFF);
DELAY(Y).
WRITEO(PORT, ON);
DELAY(Y);
WRITEO(PORT, OFF);
ENO;

••
Subroutine: PROBLEM(PORT);

1

1 Signal the operator that a problem has been encountered.
2 Wait for operator to Signal ON to retry.
3 Reset pr:blem Indicators.

PROBLEM:SUBR(X);.
WRITEO(OPER_ATTN, ON); --ask for operator's attention
WRITEO(X, ON)4 --indicate where problem is
WAIT_TOOGLE(OPER RETRY); --welt for retry signal
WRITEO(OFF); --turn off signals
WRITEO(X. °Fr);
END;

•

•

Chapter 5. Writing AML/Entry Programs 5-27i

--OK to move?

--OK to move?

--OK to move?

--OK to move?

SubroutineS:
PPMOVE(POINT), UMOVE(POINT), XXMOVE(POINT), DOZMOVE(DELTA)

The following four subroutines are used instead of the
standard move Commands. They allow you to monitor a DI
point to control movement. If OPER_OK Is not ON the no
movement is spirted

4
 the subroutines wait forever.

PPMOVE:SUBR(X);
WAIT1(OPER_OK, ON, 0);
PMOVE(X);
END;

- -

ZZMOVE:SUBR(X);
WAIT1(OPER_OK, ON, 0);
ZMOVE(X);
END;

XXMOVE:SUBR(R,X);
WAITI(OPER_OK, ON, 0);
XMOVE(R,X);
END;

DOZMOVE:SU(RIX);
WAIT1(OPER_OK, ON, 0);
DPMOVE(<0,0,0,X>);
END;

Subroutine: OPENOR

Open the gripper

1) Activate gripper open DO point.
2) Walt for open sensor to be active,

If not active in 1 second, then it must
be lammed, so signal operator.

OPENCR:SUBR;
TRY:

WRITEO(GRIP_CLOSE, OFF);--insure not trying to close
WRITEO(CRIP_OPEN, ON); --try to open
CHECK1(CRIP_OPND, ON, 1, OK); --give 1 sec. to open

ERR:
PROBLEM(PBLM_CRPR); --report problem
BRANCH(TRY); --retry

OK:
END;

Subroutine: CLOSECR

Close the gripper

1) Activate gripper close DO point.

OPENGR:SUBR;
WRITENCRIP_OPEN, OFF); --insure not trying to open
DELAY(.1);
WROTEO(CRIP_CLOSE. ON); --try to close
END;

Subroutine: DROP_PART(X)

Drop a part at feeder X into the Jig.

1) Activate the feeder DO point.
2) Wait for part presence sensor to be active,

if not active in 1.5 second, then it must
be Jammed, so signal operator.

DROP_PART:SUBR(X);
TRY:

PULSE(FEEDERSA(X),.2);
CHECK1(FEEDERSS(X), ON,

ERR:
PROBLEM(PBLM_FXTR);
BRANCH(TRY);

OK:
END;

--pulse the part release port
1.5, OK);

--allow 1.5 sec. for part

-report problem
--retry

Mb**

•

Subroutine: CET_PART(PART_TVPE)

Get the part specified by feeder number

1) Insure Z-stroke Is fully up.
.2) Insure gripper Is open.
9) Move to the proper location.
4) Release a component into Fixture's Jig.
5) Move to proper Z height.
6) Grasp the part.
7) Move to Z fully up.
B) make sure part was grasped.

GET ►ART:SUBR(X);
TRY:

ZZmOVE(0);
OPENOR;
PMOVE(FEEDERSL(X));
DROP_PART(X);
ZZMOVE(FEERERSZ(X));
CLOSEGN;
ZZMOVE(0);
TESTI(CRPR_OBJS, ON, OK);
WRITEO(GRPR_OPEN, OFF);
WRITEO(CRPR_CLOSE, OFF);
PROBLEM(PSLM CRPR);
BRANCH(TRY);

OK:
END;

--insure Z Op
--open gripper
-- move over the feeder
--activate feeder (release a part)
--go to proper height
--close gripper
--move z up to safe height

ok if there
-- relax the gripper

--inform operator
--try again

Subroutine: PUT_PART(PART_PLACE)

Insert the part specified by location number

1) Move to the proper location.
2) insert the part.

- turn gripper force sensor guarding on
- mo9e down until tripped or inserted

3) Move to Z fully up.
4) Make sure part was released.

PUT PART:SUBR(X);
E: STATIC COUNTER; --local variable for move condition

TRY:
XXMOVE(CARD, LOCATIONS(X)); --move over the card location

--location is relative to cardl
--(location z is above card-
-- this move only positions, it
-- does not insert the part)
--guard from over-pressure
--insert the component
--query the motion complete code
--save code in counter C
--disable motion guard
--open gripper
--insure Z up
--problem if stopped by guard
--was part in fact Inserted

GUARDI(GRIP_PRSS, ON);
DOZMOVE(LOC_TO_CARD);
MSTATUS(C);

NOGUARD;
OPEACR;
ZZMOVE(0);
COMPC(C<>0, PROBLEM);
TESTI(CAPR_OBJS, OFF, OK);

PROBLEM:
WRITEO(GRPR_OPEN, OFF);
WRITEO(GRP(_CLOSE, OFF);
PROBLEM(PSI.M_ORPR);
BRAMO(TRY);

OK:
ENO;

relax the gripper

--inform operator
--try again

Chapter 5. Writing AML/Entry Programs 5-2911

- -

M. •

Subroutine: INITIA

1) That the init_flag. If clear, perform the initialization,
otherwise exit.

2) I nitialization consists of:
a) set the initialization flag
b) initialize 00 lines
c) i nsure communications available

i f not - signal operator, wait for retry
d) tell host we are available

INITIA:SUBR;
COMM_STAT: STATIC COUNTER;
COMM_AVAIL: NEW 7;

--holds status of comm. system
--all comm parameters active
--(CTS on, online', XONed state)

TESTC(INIT_FLAC, ON, EXIT); --exit if already initialized

--initialize DO
WRITEO(HOST STRTD, OFF);
WRITE0(.HOST_CMPLT, OFF);
WRITEO(HOST_AVA1L, OFF);
WRITEO(OPER_ATTN, OFF);
WRITEO(PBLM_COMM, OFF);
WRITEO(POLM_FXTR, OFF),
--read come status, wait for

LOOP:
CSTATUS(COMM STAT);
TESTC(COMM 3TAT, COMM AVAIL,
PROBLEM(PBOCOMM);
WAIT TOGGLE(OPER_RETRY);
BRANEH(LOOP);

OK:
WRITEO(HOST AVAIL,ON);
SETC(INIT_TLAG,ON);

good conditions

--determine communication status
OK);
--identify problem

--and retry

--tell Host we are ready
--set flag to indicate initialized

EXIT:
END;

MAIN PROGRAM LOGIC
Check initialization.

Perform the component insert process.

1) Wait for Host's start signal.
The line must be pulsed.

2)' Acknowledge Host
a) Turn 'completed' signal off
b) Turn 'started' signal on

3) GET the Parts Insertion Locations from the host
These points are defined with respect to the card!

4) Run the Insertion loop:
a) Read instructions from the host:

part type and insertion location
b) Fetch the needed component from the proper feeder
c) 1 into cord at proper location
0) advance instruction pointer,

Run loop until all parts inserted.
or until halted by Host

5) Signal Host that the process Is finished.

MAIN : SUBR ;
I NIT IA;
WAIT TOGGLE(HOST_START);
WRITEO(HOST CMPLT, OFF);
DELAY(.2);
WRITEO(HOST_STRTD, ON);

--start of main program
--do initialization
--wait for Host start signal
--process not COmpleted yet
--insure CMPLT off before STRTD
--indicate process is starting

--the process loop
--z height of "location" data

--get instructions from host
--instructions is 2 counters:
-- 1st tells what part type
-- 2nd tells where to put on card

COMPC(1NSTRS(1) ■ 0, DONE); --part-type=0 means all done
TEST1(OPER_ABORT, ON, ABORT); --OK with Operator?
GET_PART(1NSTRS(1)); --get the part
PUT_PART(1NSTRS(2)); --insert it
BRANCH(LOOP);

ABORT:
2ZMOVE(0); --move up for safety
WAIT_TOGGLE(OPER_RETRY); --wait for operator to signal

DONE:
WRITEO1 HOST_CMPLT, ON); --indicate done
WRITEO(HOST_STRTO, OFF); --no longer active

ENO; -- and of program cycle

GET(LOC_TO_CARD);
LOOP:

GET(1NSTRS);

Rear view

IcAy===10]
25 Pin connector

CHAPTER 6. USING THE AML/ENTRY TEACH MODE

This chapter describes the functions of the teach mode and provides yoi
with exercises on how to use them. The exercises require that th
IBM-supplied blue RS-232 communications cable between the IBM Personal'
Computer and the manufacturing system controller be connected. The cablei
connection is shown in the following figure.

During the exercises, you are transferring coordinates from the teach
mode back to the editor for use in an application program. You will se
different uses of the function keys and the cursor control keys on th
IBM Personal Computer keyboard. The section titled "Teach Model
Exercises" provides a description of how to get ready for teach.

Chapter 6. Using the AML/Entry Teach Mode 6-]

CAUTION

Teach mode moves the manipulator by sending communications requests
to the controller. In certain circumstances, the manipulator may move
home unexpectedly. This happens whenever one of two events occurs:

1. The manipulator loses power, whether by an error (i.e. servo
error, overrun error, etc.) or because the stop button is hit.

2. The controller is taken off-line, the manipulator is moved, and the
controller is placed back on-line.

When either of these events occurs, Teach mode should be exited by
hitting the "end" key i mmediately. If this is not done, damage to the
manipulator or fixtures could occur because of the unexpected move
home. After the move home, the manipulator will return to the current
location indicated on the Teach screen.

. 6-2 58X7338

TEACH MODE

Teach mode is entered from the editor by pressing the F6 key. It
suspends editing and displays the work envelope.

CAUTION
The manipulator may return to the home position when the F6 key is
pressed. Guide the arm to a position where the home operation does
not strike objects and damage the manipulator. Use the Z up key on
the control panel to do this.

Teach mode allows you to determine the coordinates of a location for
your programs. You do this by moving the manipulator, using the cursor
keys of the IBM Personal Computer. When you are satisfied with the'
position, you can return to the editor by pressing the End key on the
numeric keypad. When you return to the program, you can recall the value
of the taught point. Some of the features of teach mode are:

• Display the IBM Manufacturing System work envelope on the screen and
see the position of the manipulator.

• Move the manipulator under control of the IBM Personal Computer.

• Control the state of any digital output point.

• Lower or raise the Z-axis.

• Open or close a gripper if one is installed.

• Determine a point to be recalled in your AML/Entry program.

• Return to your program in the editor.

• Retrieve a point from a program and display the values on the teach
screen.

• Change arm mode (7545-800S only)

Chapter 6. Using the AML/Entry Teach Mode 6-3

When you are in the teach mode, your screen will look similar to the
following screen, depending on which manipulator the AML/Entry system is
configured for.

000000000000400000000*

0000000 04000000 b000000 00000**

000600004000000000000000000004000*

0000 • 9000000 0000000000000000000000000*

00000000000000000000000000000400004000004*

000000000008 0000000000040000000000000000000*

0000 000004000000000004000400000400000000000004

000404*

0006000000'000O00 -0000000000000000004***** *****000*

*006000004000000000 • o o********o o o 0.* 00*

000000-00000000000000 *** ***
'0'00000000 000000000*

00000000400000000000
#

0000000000000-004 00 4e00000000000000004*
**00000000000060000000*

0000000000044 0000 00

0000000000000000 '0,

000000000000000

*00000040040**

**Int

Current Robot Location e 191.41 0.00

1HELP 6 D/0 /DOWN SP 10 LEASE

Note; The screen that shows the work envelope for the 7545-8008 is
quite different from those for other models. A figure showing that
screen can be found in the discussion "LEFT Command (Valid on 7545-800S
Only)" on page 4-9.

The characters around the work envelope have special meanings when using
teach. The section describing the precision and coarse moves contains a
description of the work envelope characters.

6-4 58X7358

2111411111 42 1.4 132241.1ki
itelistibe tiiii mil jtootla ig0-1412,1111
Alogid Let 0444 lat tio*411 04'111
iO • I I e i 1101 11 1111311101 1 0.1,01001 1

14-4 I l:IJ i
1 1411104111

Typewriter keyboardFunction
keys

Numeric
WOO

FUNCTION KEYS

Function keys have special uses while you are in the Teach mode.
Settings of these keys are displayed at the bottom of the Teach mode
screen.

Key Description

Fl Displays the Teach mode 14EI-P screen.

F2 Displays the set motion parameter screen.

F3 Retrieves and displays the next global point in a program.

F4 Retrieves and displays the previous global point in a
program.

F5 Displays the read DI/DO points screen.

F6 Displays DO control screen.

F7 Lowers the Z-axis shaft.

F8 Raises the Z-axis shaft.

F9 Closes the optional gripper.

F10 Opens the optional gripper.

Note: The Z-axis can be stopped at any position between 0 and
-250 mm. The shaft moves at a slow speed, but a coarser movement
can be obtained by pressing the shift key simultaneously with the
F7 or F8 key.

Chapter 6. Using the AML/Entry Teach Mode 6 -5

SPECIAL KEYS

The Esc key allows you to enter point coordinates, and the
manipulator then moves to that position. You enter X, Y, Z, and
Roll coordinates.

The I key allows you to bypass communications to the controller
when you want to display the teach screen without using the
manufacturing system. This happens on entry to the Teach system
from the editor. If communications cannot be established with the
controller, then an Abort, Retry, Ignore message is printed.
Option i will then give you the ability to enter Teach mode without
moving the manipulator.

The following keys located on the numeric keypad have special
applications when you use the teach mode:

4—

9
PgUp

It

Cursor keys move the cursor across the screen display of the work
envelope in the direction indicated by the arrow on the key. The
movement of the cursor is transmitted to the controller instructing the
manipulator to move to that coordinate of the work envelope. You use th
cursor keys for precision adjustments of the manipulator position. I
you hold down a cursor key, the speed of manipulator movement increases.
The screen displays the position of the manipulator.

PgUp rotates the roll axis in increments of 0.36
°
 in

clockwise direction and accelerates as the key is held down.
Roll numbers become more positive.

PgDn rotates the roll axis in increments of 0.36
°
 in a

counterclockwise direction and accelerates as the key is held
down. Roll numbers become less positive.

Press the shift key at the same time as a cursor key when coarse
manipulator movements are desired. Press the shift key at the
same time as the F3 or F4 key when you want every 10th point to
be recalled.

The End key exits the teach mode and returns to the editor.
Also use this key when you want to exit the DO control menu
without implementing any changes to DO status.

The TAB key switches the arm configuration for the 7545-800S
manipulator. When a 7545 or 7547 manipulator is attached, this
key is inactive. To switch the 7545-800S to right mode, simply
strike the TAB key. To switch the 7545-800S to left mode,
strike the TAB and shift key simultaneously. The user is
warned of an upcoming change of configuration and can abort the
change if desired.

Warning:

The TAB LEFT and TAB RIGHT keys may invoke motion. Whenever the
current point is in the region just designated with a TAB LEFT or a
TAB RIGHT key, the robot moves.

Note that there is a * region at the bottom of the workspace. Should
the user desire a change of modes in this region, the robot essentially
makes a full circle around the workspace. Thus the user should not
request a flip of modes in the lower section of the workspace.

Chapter 6. Using the AML/Entry Teach Mode 6-7

READ DI/DO POINTS

To read all installed DI and DO points on the system, press F5 in Teach
mode. Once a specific value for the DI/DO number to be read is entered,
the controller is instructed through communications protocol to read the
values of all installed DI/DO points.

After the values of the specifically-requested point are displayed on
the screen, the values of the adjacent DI/DO points are viewed by
pressing the up-arrow key to examine the value of the next sequential
point or the down-arrow to view the previous sequential point. Press
the <---(enter) key to return to the initial screen. At this point, you
are allowed to enter a new DI/DO point to read. After entering this
value, the controller is once again queried for data. Values of all
DI/DO points are either On, Off, or -- (not installed). If the End key
is pressed any time after the F5 key is pressed, you are returned to
Teach mode.

Data is read only when a DI/DO point is entered. If the states of the
DI/DO points are changed, the changes are not displayed until a new
DI/DO point is entered.

INITIAL SETTING OF MOTION PARAMETERS FOR SAFETY

To further increase the safety features of the manipulators, the motion
parameters are preset to the safest values on entry to the Teach system.
The settings, made before the homing of the arm, are outlined below.

LINEAR = 0
PAYLOAD = 1
ZONE = 1

6-8 58X7338

SET MOTION PARAMETERS IN TEACH MODE• CAUTION

Ensure that no person is in the manipulator work space when using
Teach. If an error occurs during Teach, the controller returns to the
default switch setting speed, which can result in high speed moves that
are not anticipated. To regain control of the motion parameters, you
must return to the AML/Entry Menu and then re-select the Edit/Teach
option.

To both view and modify the motion parameters, press the F2 key in
Teach. The current values for LINEAR, PAYLOAD, and ZONE are displayed
in a window. To make changes to the values, you need only enter the new
values in the appropriate fields and press the <--- 1 (enter) key. The
values are automatically updated in the controller. To leave the window
and return to the teach screen, press the End key.

EXITING THE DIGITAL OUTPUT CONTROL UTILITY IN TEACH

You are only able to exit the digital output control utility in teach by
pressing the End key. This is in accord with all other functions in the
Teach system that observe the same exit procedure. When the Return key
is pressed, the initial Digital Output Control screen is displayed and
you are able to enter a new DO point.

Chapter 6. Using the AML/Entry Teach Mode 6-9

IBM MANUFACTURING SYSTEM TEACH RESPONSES TO PREVIOUS CONDITIONS

The manufacturing system responds differently to initial teach signals
depending on the previous conditions. The following descriptions provide
the different starting conditions and the responses of the manufacturing
system upon entering teach mode or changing a status.

Condition 1 (Manipulator Power Off)

Condition 1 - Manipulator Power Off

1. Manipulator power is applied at the control panel but the Return
Home key is not pressed.

2. At the IBM Personal Computer, the editor is entered.

3. At the IBM Personal Computer, the F6 key is pressed to enter teach
mode.

Response - Manipulator returns to the Home position slowly once and
then perfornis a second return home at high speed. All digital
output (DO) points are set to the off position. The Z-axis assumes
the up position and the gripper, if provided, opens.

Note: After the F6 key is pressed, the Personal Computer issues
a message stating the manipulator is going to move to the Home
position. It also tells you to make sure the path is clear for
manipulator movement, and tells you how to leave teach mode if
necessary.

Condition 2 (Manipulator Power On, Return Home Performed)

Condition 2 - Manipulator Power On and Return Home already performed at
the control panel

1. At the IBM Personal Computer, the editor is entered.

2. At the IBM Personal Computer, the F6 key is pressed to enter teach
mode.

Response - Manipulator returns to the Home position at a fast speed
and all digital output (DO) points are set to the off position. The
Z-axis assumes the up position and the gripper, if provided, opens.

Note: After the F6 key is pressed, the Personal Computer issues
a message stating the manipulator is going to move to the Home
position. It also tells you to make sure the path is clear for
manipulator movement, and tells you how to leave teach mode if
necessary.

6-10 58X7338

Condition 3 (Exit Teach)

Condition 3 - You exit teach mode and the editor after moving the
manipulator via a teach operation.

1. At the IBM Personal Computer, the editor is selected at the menu.

2. At the IBM Personal Computer, the F6 key is pressed to enter teach
mode.

3. No operator action is taken at the control panel.

Response - Manipulator returns to the Home position at a fast speed
and digital output (DO) points are NOT affected. The Z-axis
remains in the position last taught, and the gripper, if provided,
remains either open or closed.

Note: After the F6 key is pressed, the Personal Computer issues
a message stating the manipulator is going to move to the Home
position. It also tells you to make sure the path is clear for
manipulator movement, and tells you how to leave teach mode if
necessary.

Condition 4 (Exit Teach, Remain in Editor - Control Panel Move)

Condition 4 - You exit teach mode at the IBM Personal Computer but
remain in the editor after moving the manipulator to a
point. You then use the control panel to control the
manipulator position, Z-axis, or gripper.

1. At the IBM Personal Computer, the F6 key is pressed to enter teach
mode. The cursor is located at the last taught point. The
manipulator does not move from the position located using the
control panel.

2. You press a cursor key to move the manipulator or change a DO status
using the function keys.

Response - Manipulator returns to the Home position at a fast speed
and all digital output (DO) points are set to the off position.
The Z-axis assumes the up position, and the gripper, if provided,
opens before the manipulator moves to the Home position. If
cursor key has been pressed, the manipulator moves to the new
cursor position rapidly once the manipulator is at the Home
position. This occurs in a coordinated move ending when all axes
are in their correct position.

Chapter 6. Using the AML/Entry Teach Mode 6-11

If a DO status change was requested, the manipulator stays at the
Home position and the DO changes to the requested on or off
position. When a cursor key is pressed the manipulator rapidly
moves to the cursor position.

DANGER

THE MANIPULATOR CAN UNEXPECTEDLY MOVE TO THE HOME
POSITION AND BACK TO THE CURSOR POSITION WITH NO NOTICE
GIVEN. ENSURE THE PATH TO AND FROM THE HOME POSITION IS
CLEAR BEFORE RETURNING TO TEACH MODE. THE SPEED AND
FORCE OF THE MANIPULATOR CAN CAUSE SERIOUS INJURY TO
PERSONNEL AND DAMAGE TO EQUIPMENT IN ITS PATH.

Condition 4a - You use the operator panel to enter manual mode from
teach mode. You then use the control panel to control
the manipulator position, Z-axis, or gripper.

1. Using the operator panel, you put the system on-line so the
manipulator can be moved in teach mode.

2. You press a cursor key to move the manipulator or change a DO status
using the function keys.

Response - Manipulator returns to the Home position at a fast speed
and all digital output (DO) points are set to the off position.
The Z-axis assumes the up position, and the gripper, if provided,
opens before the manipulator moves to the Home position. If a
cursor key has been pressed, the manipulator moves to the new
cursor position rapidly once the manipulator is at the Home
position. This occurs in a coordinated move ending when all axes
are in their correct position. If a DO status change was
requested, the manipulator stays at the Home position and the DO
changes to the requested on or off position. When a cursor key is
pressed the manipulator rapidly moves to the cursor position.

DANGER

THE MANIPULATOR CAN UNEXPECTEDLY MOVE TO THE HOME
POSITION AND BACK TO THE CURSOR POSITION WITH NO NOTICE
GIVEN. ENSURE THE PATH TO AND FROM THE HOME POSIT ION IS
CLEAR BEFORE RETURNING TO TEACH MODE. THE SPEED AND
FORCE OF THE MANIPULATOR CAN CAUSE SERIOUS INJURY TO
PERSONNEL AND DAMAGE TO EQUIPMENT IN ITS PATH.

6-12 58X7338

Condition 5 (Exit Teach, Remain in Editor after Manipulator Move)

Condition 5 - You exit teach mode at the IBM Personal Computer but
remain in the editor after moving the manipulator to a
point. No changes are made at the control panel after
teach mode is invoked initially and the communications
connection is maintained between the IBM Personal
Computer and the manufacturing system.

1. At the IBM Personal Computer, the F6 key is pressed to enter teach
mode.

2. You press a cursor key to move manipulator or change a DO status
using the function keys.

Response - If the cursor is moved, the manipulator moves to the new
position without returning home. If a DO status change was selected
by a function key, the controller responds and no return home
occurs.

Chapter 6. Using the AML/Entry Teach Mode 6-13

TEACH MODE EXERCISES

In the following exercise, you are going to use the editor on a new
file. Your exercise consists of using the teach features and recalling a
point for a small program that only performs manipulator moves. The
completed exercise creates a program that can be compiled and loaded
into the controller.

The editor should display a new file with no name when you start. Refer
to Chapter 3, "Using the AML/Entry Editor" for editor access.

You: In the editor, press the enter (<—J) key.

System: Cursor moves to the TOP•OP•TILE line.

The next instruction inserts four lines in the editor.

You: Type: 14

System: The cursor moves to the right of line 1.

You: Type: OUTER:SUBR;
You: Press: Ctrl and the enter (<—J) key.
You: Type: PMOVE(PT
You: Press: Ctrl and the enter (<---- 1) key.
You: Type: PMOVE(PT
You: Press: Ctrl and the enter (<—J) key.
You: Type: END;

Your file is ready for the exercise.

6-14 58X7338

bd
0

POWER-UP SEQUENCE FOR TEACH EXERCISES

Use the following steps to power-up the manufacturing system and to
establish communications between the IBM Personal Computer and the
controller. If an indicator or switch is in the desired state during the
power-up sequence, skip that step.

You: At the controller, set the power circuit breaker

to I (on)

System: The power lamp on the front of the controller lights and
the Power, On Line, and Manual LEDs on the control panel light.
The fan motor in the controller starts.

You: At the control panel, turn the Stop pushbutton
clockwise to the on position.

/ /

\\.
System: The switch is in the on position (raised).

Chapter 6. Using the AML/Entry Teach Mode 6-15

Return
Home

0

You: At the control panel, press the Manip Power key.

INSTRUCTION

[

Menlo
Power

0

System: The Manip Power indicator lights.

Note: If the On line LED is not lit, you must press the key.

You: Wait 10 minutes for the controller and the manipulator
to warm up.

DANGER

BE SURE THE PATH IS CLEAR FOR THE RETURN HOME PERFORMED BY
THE MANIPULATOR WHEN THE RETURN HOME KEY IS PRESSED
ON THE CONTROL PANEL.

STAND CLEAR OF THE MANIPULATOR WORK ENVELOPE BEFORE THE
NEXT STEP. THE SPEED AND FORCE OF THE MANIPULATOR CAN
CAUSE SERIOUS INJURY TO PERSONNEL AND DAMAGE TO EQUIPMENT
IN ITS PATH. THE MANIPULATOR MAY MAKE TWO RETURN-TO-HOME
MOVES WITH THE SECOND RETURN TO HOME USING HIGH SPEED
IN ORDER TO CALIBRATE THE SYSTEM.

You: At the control panel, press the Return Home key.

System: Manipulator moves to the Home position. After the manipulator
stops moving, the Home indicator lights.

DANGER

STAND CLEAR OF THE MANIPULATOR WORK AREA. THE NEXT

MAY GENERATE A RETURN HOME SIGNAL TO THE MANIPULATOR.

You: At the IBM Personal Computer, press: F6

System: Screen blanks and then refreshes, displaying the work
envelope of the manipulator.

6-16 58X7338

• Coarse Movement

Pressing the shift and cursor keys on the numeric keypad moves the
cursor across the screen. If the location of the cursor is within the
manipulator work envelope, the manipulator moves to the location
indicated by the cursor. The rectangular symbol in the work area
displayed on the screen is the actual location of the manipulator within
the work envelope. Coarse adjustments to the X- and Y-coordinates are
made by using the shift key in combination with the cursor keys.

Coarse moves are restricted to areas of the work envelope display that
have the character (u). Precision moves are permitted at locations that
have either the above character or the character (*). Coarse
adjustments to the roll angle are made by using either the PgUp or
PgDn keys in combination with the shift key.

This exercise demonstrates the movements obtained when pressing the
cursor and shift keys. This method is used for coarse adjustments in
locating a point in the work area.

You: Using the cursor keys on the numeric keypad, move the cursor
within the display area of the work envelope.

You: Observe the movement of the cursor, the rectangular symbol,
and the changing current position numbers at the IBM Personal
Computer. Observe the movement of the manipulator while a curs
or page key is pressed at the same time as the shift key.

Chapter 6. Using the AML/Entry Teach Mode 6-17

Precision Movement

The following exercise uses the cursor keys and the page keys (PgUp,
PgDn) that move the manipulator when precision movements are needed.
Observe the screen of the IBM Personal Computer for changing values of
X, Y, and R. The movement of the manipulator is difficult to detect at
first.

Precision moves are permitted at locations with either the character (0)
or the character (*).

You: Use any cursor or page key on the numeric keypad.
Keep the cursor within the display work envelope.

You: Observe the changing current position numbers on the bottom
of the teach screen while you press each cursor key. Also,
observe the movement rate of the rectangular symbol and the
manipulator.

You: The F7 and F8 keys can be used to move the
Z axis slowly up and down. The only indication on the screen
is the changing value for Z.

Note: If you move the cursor out of the work area, the
manipulator does not make that move. The screen displays TARGET
NOT WITHIN ROBOT WORKSPACE while the cursor is out of the
work area.

DANGER

WHEN THE CURSOR RETURNS TO THE WORK ENVELOPE, THE
MANIPULATOR MAKES A FAST MOVE TO THE POSITION OF THE
WORKSPACE THAT THE CURSOR INDICATES.

6-18 58X7338

Entering Known Coordinates

This exercise demonstrates the ability to enter a point. Once a valid
value (one within the work area) is entered, the manipulator moves tol
that location.

You: Press: Esc

System: Screen displays X=

You: Type: -315.5
You: Press the enter (<---I) key.

System: Screen displays Y=

You: Type: 100.4
You: Press the enter (<—J) key.

System: Screen displays Z=

You: Type: -100
You: Press the enter (<-----1) key.

System: The screen displays R=

You: Type: - 180
You: Press the enter (<—J) key.

System: Screen displays new coordinates for X, Y, Z, and R,and the
manipulator moves to the coordinates. The screen displays the
location of the manipulator.

You: Press: Esc

System: Screen displays X=

You: Press the enter (<---I) key.

System: Screen displays Y= and the X-coordinate remains
the same because no new value was entered.

You: Press the enter (<--- 1) key.

Chapter 6. Using the AML/Entry Teach Mode 6-19

System: Screen displays Z= and the Y-coordinate remains
the same because no new value was entered.

You: Press the enter (<—J) key.

System: Screen displays R= and the coordinates of Z remain
the same because a new value was not entered.

You: Type: 180
You: Press the enter (<---J) key.

System: Screen displays coordinates for X, Y, Z, and R.
The manipulator moves to the new R-coordinate.

6-20 58X7338

• Return Point Value to Program (Recall)

Now return to the editor where you can put the coordinates of your last
manipulator position into your program.

You: Press: End

System: Screen blanks and then displays the editor with your program.

You: Using the cursor keys on the numeric keypad, position the
cursor after the PT of line 2.

You: Press: F7

System: Recall key displays the taught point on the screen at the
cursor position. The values are enclosed in
parentheses () and followed by a semicolon.

You: Press: Ins
You: Using the cursor keys on the numeric keypad, position the

cursor under the semicolon (;) at the end of line 2.

You: Type a right parenthesis).

System: Your statement should have two left, two right parentheses,
and a semicolon.

You: Press: Ins

Note: Always check the quantities of right parentheses) and
semicolons (;) dt the end of the statement. If you replace values
using the Recall feature with one having fewer characters, an
unequal number of parentheses causes errors when compiling the
program.

You do not have to use the recall immediately after you have taught a
point. You can type other statements and then do a recall.

Chapter 6. Using the AML/Entry Teach Mode 6-21

Obtaining an Additional Point

This exercise returns the IBM Personal Computer and manufacturing system
to the teach mode to obtain a second point for your application program.
The indicators and switches on the system do not need any additional
steps if you have not changed any setting since teach was exited the
first time.

You: Press: F6

System: Screen blanks and then displays teach. The manipulator is
still in the last position when you exited teach.

You: Use the cursor control keys to locate a new coordinate.

System: Manipulator moves to the new coordinate and the new
location is displayed on the screen.

You: Press: End

System: Screen blanks and then displays the editor with your program.

You: Use cursor keys to move the cursor after the PT
of line 3.

You: Press: F7

System: A value for the PT is transferred from teach mode, using the
recall feature.

You: Press: Ins
You: Using the cursor keys on the numeric keypad, position your

cursor under the semicolon (;) at the end of line 3.
You: Type a right parenthesis).

System: Your statement should have two left, two right parentheses,
and a semicolon.

You: Press: Ins

The program is complete for manipulator moves between the points. You
could save, compile, and load this program into the controller.

6-22 58X7338

Retrieving a Point from a Program

The recall function of teach allows you to retrieve a point location
from a program using the F3 (Recall+) and F4 (Recall-) keys. You may
display the values on the screen, modify any or all of the values, and
move the manipulator arm to that point.

Before you begin the exercise, understand the following rules, which
apply when retrieving a point from a program:

• The retrieved point value must be global. That is, it must be
defined before the first SUBR statement. In this example,

POINT1:NEW PT(650,0,0,0);

OUTER:SUBR;

POINT1 is retrievable from the teach screen. But, it is not if it
is defined:

OUTER:SUBR;
POINT1:NEW PT(650,0,0,0);

• Only one PT per line can be recalled. Thus if two PT's appear in
the same line, only the first can be recalled.

• The PT definition statement must have a left parenthesis immediately
following the PT, with no blank space in between. Teach does not
retrieve a PT definition followed by a blank. For example,

POINT1:NEW PT(650,0,0,0);

is a valid PT definition. But in the following statement,

POINT1:NEW PT (650,0,0,0);

POINT1 would not be retrieved.

•
Chapter 6. Using the AML/Entry Teach Mode 6-23

• The point location must contain absolute coordinates; that is, it
must be numeric, not a declared point name. For example,

POINT1:PT(650,0,0,0);

OUTER:SUBR;

is an acceptable point; the following is not.

SIXFIFTY:NEW 650;
ZERO:NEW 0;

POINT1:NEW PT(SIXFIFTY,ZERO,ZERO,ZERO);

OUTER:SUBR;

The following exercise demonstrates the recall function of teach mode.

Note: At any time during this procedure, you may press the End
key to terminate this function. The teach screen remains
displayed.

You: Position the cursor on the TOP•OF•FILE line.
You: Type: i2
You: Press the enter (<—J) key.

System: Blank lines have been inserted for lines 1 and 2.
The cursor is to the right of line 1.

Your Type: PT1 : NEW PT(-650,0,0,0);
You: Press the enter (<—J) key.

System: Cursor moves to the right of line 2.

You: Type: PT2 : NEW PT(0,650,0,0);
You: Press: F6

System: Screen blanks and then displays the teach screen.
The manipulator arm is still in the last position when
you exited teach.

You: Press: F3

6-24 58X7338

System: "Press Enter to Move to PT1: -650 0 0 0" is displayed above
the "Current Robot Location" message. This message displays th e
name of the first global point in your program, and the X, Y, Z,
and roll coordinates of that point.

•
You: Press: F3

System: "Press Enter to Move to PT2: 0 650 0 0" is displayed, this
time with the point name and coordinates of the next global point
in your program.

You: Press the enter (<—J) key.

System: A message is displayed to remind you to check the path of
the manipulator because the arm is going to move directly to the
global point.

DANGER

BE SURE THE PATH IS CLEAR FOR THE MOVE PERFORMED BY
THE MANIPULATOR WHEN THE ENTER KEY IS PRESSED ON THE
KEYBOARD.

STAND CLEAR OF THE MANIPULATOR WORK ENVELOPE BEFORE
THE NEXT STEP. THE SPEED AND FORCE OF THE MANIPULATOR
CAN CAUSE SERIOUS INJURY TO PERSONNEL AND DAMAGE
TO EQUIPMENT IN ITS PATH.

You: Press the enter (<---I) key.

System: Manipulator arm moves to the location of PT1, as displayed
in the "Press Enter to Move to" message. That message is
cleared from the screen. The coordinates of PT1 are now
displayed after the "Current Robot Location" message.

You: Press: F4

System: The "Press Enter to Move to PT1" message is displayed again,
because F4 recalls the previous point in your program.
At this point, you may press the Enter key to move, or:

You: Press: Esc

Chapter 6. Using the AML/Entry Teach Mode 6-25

System: The X= prompt is displayed on the last line
of the screen.

You: Press the enter (<---1) key.

System: X coordinate that is displayed in the "Press Enter to Move to"
message (-650) is pre-filled after the X= prompt, followed by
Y. You may enter a coordinate from the keyboard, or:

You: Press the enter (<--J) key.

System: Y coordinate that is displayed in the "Press Enter to Move to"
message (0) is pre-filled after the Y= prompt, followed by
Z. You may enter a coordinate from the keyboard, or:

You: Press the enter (<--J) key.

System: Z coordinate that is displayed in the "Press Enter to Move to"
message is pre-filled after the Z= prompt, followed by
R. You may enter a coordinate from the keyboard, or:

You: Press the enter (<----1) key.

System: Roll coordinate that is displayed in the "Press Enter to
Move to" message (0) is pre-filled after the R= prompt.

You: Press the enter (<—J) key.

System: Manipulator arm moves to the point location shown by the X.=,
Y=, Z=, and R= prompt.That prompt is then cleared
from the screen. The coordinates of that point are now
displayed after the "Current Robot Location" message.

You: Press: F3

System: "Press Enter to Move to" message is displayed again,
with the point name and coordinates of the next global point
in your program, which is PT2. You may press the Enter key to
move, or:

You: Press: End

System: "Press Enter to Move to" message is cleared from the screen.
The manipulator arm position does not change.

The F3 and F4 keys recall the next global or the preceding global point
from the AML/Entry program. For programs with many global points, using
the F3 and F4 keys to recall a particular point can take a long time.
To speed the process, hitting the shift key in conjunction with the F3
and F4 keys recalls the 10th next or 10th preceding point. This allows
you to step through all the global points much faster. An easy way to
remember this is that the shift key always causes a larger step.
Hitting the shift key with a cursor key causes the manipulator to make a
bigger move, likewise hitting the shift key with the F3 or F$ key causes
a bigger step between the recalled points.

6-26 58X7338

Note: If the currently recalled point is one of the last global
points, than recalling the 10th next point will cycle back from
the beginning. Likewise, recalling the 10th previous point when
the currently recalled is one of the first causes a cycle back
from the last global point.

Chapter 6. Using the AML/Entry Teach Mode 6-27

Controlling Digital Output (DO) from Teach

This exercise returns to teach mode to demonstrate the digital output
control feature. This procedure changes digital output point 2 to the
on state.

Note: Remember, the DO points are numbered starting with 1. For
example, on systems with 16 DO points, the points are numbered 1
to 16.

You: Press: F6

System: Screen blanks and then displays the teach screen. The
manipulator is still in the last position when you exited teach.

You: Press: F6

System: Screen displays the digital output control menu.

You: Type a 2 and then press the down arrow cursor key
one time.

System: Screen displays the 2 and the cursor moves below the
OFF position.

The left and right cursor keys move the cursor between the ON and OFF
position of the control screen.

You: Press the right cursor key one time.

System: Cursor moves to the ON position.

You: Press the enter (<—J) key.

System: Digital output menu disappears and the gripper closes.

Note: If the End key is pressed while you are displaying
the digital output screen, the screen disappears and the
information on the screen is not processed. The remainder
teach screen is displayed.

The next instruction ends the teach mode and returns the editor display.

You: Press: End

System: Screen blanks and then displays the editor with your program.

You: Exit the editor.

6-28 58X7338

Changing Manipulator Arm Mode

Two key functions are supported for the 7545-800S only. Just below the
ESC key, the TAB LEFT key (upper shift) and the TAB RIGHT key (lower
shift) can be used to change the configuration of the robot without ;

moving to a new point. The user is warned of an upcoming change ofl
configuration and can abort the change if desired.

The TAB LEFT and TAB RIGHT keys can be used at any time, regardless of
the current robot position. They designate which portion of the work
space is to be considered valid by the editor. If the cursor is moved,
to a point within the current work mode region, the robot moves to that,
point immediately.

Conversely, if the cursor is moved to a point that is in the workspace
of the robot but not in the current mode region, the robot does not
move. Instead, a POINT OUT OF WORKSPACE message is displayed. For,
example, if the TAB LEFT key is pressed, the editor would recognize only'
points in the LEFT mode region. Then, only points accessible in LEFT
mode can be reached, and all other points would cause a POINT OUT OF
WORKSPACE message to be displayed. If this happens, either of the
following could occur:

• If the cursor is moved back into the LEFT mode region, the robot
immediately moves to the new point.

• If the user presses the TAB RIGHT key, causing the current point to
be recognized by the editor, the robot then moves to the new point.

DANGER

The TAB LEFT and TAB RIGHT keys may invoke motion. ANY TIME
THAT THE CURRENT POINT IS IN THE REGION JUST DESIGNATED
WITH A TAB LEFT OR A TAB RIGHT KEY, THE ROBOT MOVES.

NOTE THAT THERE IS A * REGION AT THE BOTTOM OF THE
WORKSPACE. SHOULD THE USER DESIRE A CHANGE OF MODES IN
THIS REGION, THE ROBOT ESSENTIALLY MAKES A FULL CIRCLE
AROUND THE WORKSPACE. THUS THE USER SHOULD NOT REQUEST
A CHANGE OF MODES IN THE LOWER SECTION OF THE WORKSPACE.

Chapter 6. Using the AML/Entry Teach Mode 6-29

REMOVING POWER AFTER TEACH EXERCISES

The following steps remove the controller power after completing the
teach exercises.

You: At the control panel, press the Stop pushbutton down.

System: Manip Power LED goes out.

You: At the controller, set the power switch to 0 .

System: All indicators on the control panel and the controller go out.

6-30 58X7338

CHAPTER 7. OPERATING THE MANUFACTURING SYSTEM

This chapter provides the details for operating the manufacturing
system. The chapter includes information relative to transferring
application programs from the IBM Personal Computer to the controller
and use of the control panel.

Before you begin, read the "Safety" section of this Users' Guide.

The sequence of this chapter is as follows:

• Controller power switch and power lamp location

• Control panel key and LED indicator description

• System power-on sequence

• Stopping the manipulator and power-off sequences

• Application program transfer

• Testing application programs in manual mode

• Manual operation of the manipulator

— Control of axis motors

— Control of Z-axis shaft position

— Control of gripper

• Automatic operation

- Starting an application program

— Recalling an application program

• Clearing error conditions

Note: The procedures in this chapter provide the sequence of
pressing keys for the different modes of operation. If you are
told to press a key or position a switch that is already in that
configuration, skip that instruction.

Chapter 7. Operating the Manufacturing System 7-1

11111111111
11111111 111

1 11 1 11111111 1 111 1 11111 1 1 1 , 1 11 11 111111(1 1 1

CONTROLLER

Power On/Off Switch/Circuit Breaker

The power switch is located on the outside of the controller. It is an
on/off switch and a circuit breaker. To apply power, place the switch to
the 1 (on) position.

0

Power
On

0

Side View

Power On Light

The lamp on the front door lights when the power switch is on.

CONTROL PANEL

The control panel contains pressure-sensitive keys and light-emitting
diode (LED) indicators. The keys are your interface to the controller.

The LEDs indicate controller and manipulator status. The functions and
names of the keys and LEDs are described below:

Key/LED FUNCTION

When in the down position this latching pushbutton
removes power to the manipulator. Manipulator power
cannot be energized when this pushbutton is latched in
the down position.

Power

The Power LED lights when the power switch at the
controller is in the 1 (on) position.O

Chapter 7. Operating the Manufacturing System 7-3

Key/LED FUNCTION

The Home LED lights when the manipulator is in the Home
position. At this position, the controller initializes
its servo positions through the limit switches.

EE

1;1

The Memory LED lights after you press the Stop and Mem
key and when the application, running in automatic
mode, has encountered a BREAKPOINT program statement.
The LED remains on until you press the Start Cycle key.

The servo error (SE) LED lights when a servo fault is
detected.

The LED blinks when an encoder fault is detected.

The power failure (PF) LED lights if an under-voltage
condition is detected by the controller.

The Overrun (OR) LED lights when one of the servoed
axes is beyond the maximum working envelope range.

The over-time (OT) LED lights when a time-limit value
for a WAITI in an application program has exceeded its
programmed value.

The transmission error (TE) LED lights when a
transmission error occurs between the controller and
the IBM Personal Computer or a host computer.

Memory

0

OR

Gripper
Close

0
Manip
Power

0

Return
Home

0

Recall
Memory

0

[

Reset
Error

C)

Key/LED FUNCTION

The data error (DE) LED lights if a data error occurs
due to a programming error within an application
program.

The LED blinks if an error caused by a controller
malfunction occurs during execution of an application
program.

This key opens the optional gripper when you are
operating in manual mode. The LED stays lit only while
you are pressing the Gripper Open key.

This key closes the optional gripper when you are
operating in manual mode. The LED stays lit while the
gripper is closed.

This key energizes the control and servo circuits. The
LED Lights when you press the key and remains lit until
you press the Stop pushbutton, or remove the power from
the controller.

Gripper
Open

0

This key causes the controller to return the
manipulator to the Home position, where the servo
motors and the stepper motor are initialized. When you
press the Return Home key, the LED lights and then goes
off when the manipulator finds the home position.

This key instructs the manipulator to resume execution
of an application after a BREAKPOINT command. The LED
lights when the key is pressed and remains on until the
Start Cycle is pressed.

This key resets the error LEDs if the error condition
no longer exists.

Chapter 7. Operating the Manufacturing System 7-5

Key/LED FUNCTION

Z
Up

0

Pressing this key raises the Z-axis shaft when you are
using the manual mode. The LED stays lit only while
you are pressing the Z Up key.

z
Down

Pressing this key lowers the Z-axis shaft when you are
using the manual mode. The LED stays lit only while
you are pressing the Z Down key.

Pressing this key causes the controller to enter theOn
Line on-line state. The LED remains lit until the mode is

ended. In this mode, a host computer or the IBM
Personal Computer can communicate with the controller.

DANGER
THE MANIPULATOR RESPONDS TO THE REMOTE HOST
COMMANDS IN THIS MODE. THE MANIPULATOR MAY
MOVE WITHOUT WARNING WHEN IN THIS MODE.

Off
Line

0

Pressing this key ends the on-line state.
Communications with a host or IBM Personal Computer is
not possible in this mode. The LED lights when this
mode is active.

Auto

0

This key permits automatic or continuous execution of
one of the application programs. The LED lights when
the key is pressed.

Manual This key allows operator control of the manipulator,
including stepping through an application program one
line at a time. The LED lights when this key is
pressed.

7-6 58X7338

Key/LED FUNCTION

tStart
Cycle

0

This key starts or resumes an application program. The
LED lights when the key is pressed and goes off if the
program stops.

Pressing this key terminates the execution of an
application program when the end of the program is
reached. The LED lights when the key is pressed and
goes off when the program stops or step mode is
started.

Stop
Cycle

O

This key instructs the controller to stop at a
BREAKPOINT statement or at the last line of an
executing application program, depending on which one
is encountered first.

The controller then stores the present state of its
memory. This includes instructions, counters, and
variables for a subsequent recall by a recall memory
command.

The LED lights when the key is pressed and goes off
when the application program stops. If the Memory LED
does not light, the controller has stopped at the end
statement of the program and the program must be
started without using the Recall Memory key.

While the controller is in manual or automatic mode,
this key instructs the controller to execute a single
command of a selected application program and then to
wait for the key to be pressed again.

The LED lights when the key is pressed.

Stop and
Mem

0

Step

0

Rapid

0
Pressing this key in conjunction with a manual move key
speeds up the movement of the manipulator during manual
mode positioning. The LED stays lit while you press
the key.

Chapter 7. Operating the Manufacturing System 7-7

Key/LED FUNCTION

01+ Pressing this key moves the 01 axis of the manipulator
in a counterclockwise direction as long as you hold it.
The controller must be in the manual mode and off-line.
The LED stays lit while you press the key.0

81- Pressing this key moves the 01 axis of the manipulator
in a clockwise direction as long as you hold it. The
controller must be in the manual mode and off-line.
The LED stays lit while you press the key.0

Pressing this key moves the 02 axis of the manipulator
in a counterclockwise direction as long as you press
it. The controller must be in the manual mode and
off-line. The LED stays lit while you press the key.

Pressing this key moves the 02 axis of the manipulator
in a clockwise direction as long as you press it. The
controller must be in the manual mode and off-line. The
LED stays lit while you press the key.

Each Appl key selects its respectively stored application for execution
when the Start Cycle key is pressed.

Appl 1

AppI 3

0

Appl 5

Pressing this key moves the R-axis in a clockwise
direction while you press it. The controller must be in
manual mode. The LED stays lit when you press the key.

Pressing this key moves the R-axis in a
counterclockwise direction while you press the key. The
controller must be in the manual mode. The LED stays
lit when you press the key.

•

When an overrun error occurs, pressing and holding this
key allows manipulator power to be turned back on with
the hitanits Power key. With manipulator power on and
while still holding the O.R. Reset key, the axis motion
key can be used to move the axis back within its travel
range.

The OR Error LED lights when an overrun condition
exists on one of the servoed axes and stays lit until
the axis causing the overrun is moved to within its
travel limit. The Reset Error key can then be used to
reset the OR error.

•
Chapter 7. Operating the Manufacturing System 7-9

SYSTEM POWER-UP SEQUENCE

The following procedure is the sequence to follow when you power-up the
system. Before you apply power, you should be familiar with the Safety
section in the front of this document.

Power-up the controller as follows:

You: Check that switches are properly set for the application
involved. The application program can control the position
zone, and speed, or allow the switches to determine the settings
'for the application. These switches are located on the Motor
Control Board on the controller door. Refer to IBM
Manufacturing Systems Specifications Guide, 8577126 for the
Switch settings on the Motor Control Board.

You: Check that the air regulator (user-supplied) is set at
the proper air pressure for the application to be run.

DANGER
MAKE SURE THAT NO ONE IS IN THE WORK AREA OF THE
MANIPULATOR WHILE IT IS BEING POWERED UP.

You: Set the power switch to the 1 (on) position.

You: At the control panel, turn the Stop pushbutton clockwise.

System: Stop pushbutton pops up to the on position.

You: Press the Manip Power key.

System: Manip Power LED lights.

You: You should allow the controller and manipulator 10 minutes
to warm up and stabilize before starting your application.
For maximum effectiveness, you should run an exerciser
program during the warm-up period.

7-10 58X7338

DANGER
YOU MUST NOT ATTEMPT TO MOVE THE MANIPULATOR BY HAND
ONCE THE MANIP POWER LED IS LIT. IF YOU NEED TO MOVE THE
MANIPULATOR BY HAND WHEN THE LED IS LIT, PRESS THE STOP
PUSHBUTTON TO REMOVE SERVO MOTOR POWER.

DANGER
STAND CLEAR OF THE MANIPULATOR. THE MANIPULATOR MAY
MAKE ONE SLOW "RETURN HOME" FOLLOWED BY A FAST "RETURN
HOME" AS PART OF AN INITIALIZATION PROCEDURE.

You: Press the Return Home key.

System: Manipulator moves to the HOME position and the Return
Home LED stays lit until the manipulator reaches the HOME
position, lighting the HOME LED.

The manipulator is now ready for manual or automatic mode of operation.

Chapter 7. Operating the Manufacturing System 7-11

MANUAL AND AUTOMATIC STOPPING OF THE MANIPULATOR

Before you begin using the system, be aware of the ways to stop it when
using either the automatic or manual modes of operation.

Stop Pressing this red pushbutton on the control panel
instantly stops the manipulator in either automatic mode
or manual mode. This is the fastest method of stopping
the manipulator during any situation, including
emergencies.

Any time it is necessary to use the Stop pushbutton, the
controller power should be removed and then reapplied
before reactivating the manipulator power.

Stop Cycle Pressing this key when an application program is
executing in the automatic mode stops the program after
the last END statement is executed in the program. The
operation may be restarted by pressing the Start Cycle
key.

Stop and Mem Pressing this key, when an application program is
executing in the automatic mode, stops the program at the
first programmed BREAKPOINT statement or at the END
statement. The program continues to execute until one of
the two statements is encountered. The LED stays lit
until the program stops execution.

Step Pressing the Step key stops automatic execution of the
application program and allows each program statement to
be executed each time the key is pressed. When the last
statement of the program executes, the program cycles to
the beginning of the program. Automatic execution
resumes when the Start Cycle key is pressed.

7-12 58X7338

POWER-OFF SEQUENCE

This procedure removes power from the manipulator.

You: At the control panel, press the Stop pushbutton.

System: Power LED at the control panel remains on. Depending on the
mode of operation, several other LEDs, such as Off Line and
Manual, may be lit. The manipulator is disabled.

If all power is to be removed from the system, follow the next
instructions. (If the manipulator power is to be restored, return
to the power-up sequence, starting at the control panel.)

You: At the controller, set the power switch to the
0 (off) position.

System: Power lamp on the front of the controller goes out and the
controller fan stops. All LEDs at the control panel go off.

Chapter 7. Operating the Manufacturing System 7-13

CONTROLLER STORAGE MANAGEMENT

The controller has the ability to store application programs up to a
total of 24000 bytes depending on the configuration of the controller.
The controller has the capacity to store up to 5 application programs or
the amount of memory available in the controller. The actual number of
programs that can be stored depends on the number of bytes of each
program.

The controller manages its storage dynamically and utilizes all
fragments of user memory.

For example, on a system with 24000 bytes of memory:

1. If all the memory has been cleared,

2. A 13000 byte program is loaded to partition 1, and

3. A 10000 byte program is loaded to partition 2,

4. The controller could still accept one of the following:

• A 1000 byte program in partition 3, 4, or 5.

• A 11000 byte program in partition 2.

• A 14000 byte program in partition 1.

One large program can use the space of all the partitions. If you
attempt to load an application program and insufficient storage remains
to store the program, the message "Controller memory has been exceeded,
unload a partition" is on the IBM Personal Computer. In order to make
room for the application, you have to free-up some of the controller
memory by unloading other partition(s). The IBM Personal Computer does
not prompt you to retry.

Refer to Chapter 8, "Communications" for communication features that
allow error message retrieval from the controller.

There are several ways to clear the problem. One of the ways is to
evaluate each step of the application program for unnecessary
statements. If the program can be shortened, make the changes to the
program, compile the program, and then load. The second method involves
selecting one or more different storage partitions to be cleared using
the Unload (Option 4 of the menu) program to each of the selected or
all partitions at one time.

7-14 58X7338

The steps for clearing old application programs are:

Your Apply power to the Manufacturing System controller.

You: Access the AML/Entry menu.

You: Connect the RS-232 communication cable between the Personal
Computer and the Manufacturing System controller.

You: At the Manufacturing System Control Panel:
Press the On Line key

System: Off line LED goes off and the On line LED lights.

You: At the Personal Computer:
Type 4 and press the enter) key.

System: Screen displays: Loading

System: Screen displays: Enter partition number to be unloaded

You: Type a single partition number to clear that partition
or type all to clear all partitions.

You: Press the enter (<---- 1) key.

System: When the unload is complete, the screen displays:
Press any key.

You: Press any key.

System: Screen displays the menu.

You: At the Personal Computer, attempt to load your new
application program to the selected partition number.

Chapter 7. Operating the Manufacturing System 7-15

COMPILE AND LOAD AN APPLICATION PROGRAM

The following procedure provides the steps for converting a program at
the Personal Computer and then loading it into a storage partition in
the controller. The storage partition numbers correspond to the Appl 1
through Appl 5 keys. This procedure assumes that you are using the menu.
You may want to check that your configuration utility reflects the
correct system type (units and communication port). Refer to
Chapter 2, "Getting Started on the IBM Personal Computer" for details.

Bringing Up the AMLJE Menu On a Standard PC

If you have a standard PC with no fixed disk, perform the following
steps to bring up the AML/E System Menu.

You: Open drive A (left drive) on the Personal Computer.

You: Insert your AML/E System Diskette Number 1 into drive A.
Insert your AML/E System Diskette Number 2 into drive B if your
PC has a B drive.

You: Set System Unit power switch to ON.

You: When requested, type in the date in the format shown
on the screen.

You: Press the enter (<----1) key.

You: When requested, type in the time in the format shown
on the screen.

You: Press the enter) key.

System: AML/E menu is displayed:

Bringing Up the AML/E Menu On a PC With a Fixed Disk

If you have a fixed disk on your PC, perform the following steps to
bring up the AML/E System Menu.

7-16 58X7338

You: Set System Unit power switch to ON and let AUTOEXEC.BAT run.

You: If AUTOEXEC.BAT does not prompt for the date and time, ,

enter the commands date and time and enter the current
date and time in the format required.

You: Change to the directory that contains the AML/Entry system
using the chdir command.

You: Enter the command menu.
The last two steps are done automatically if the AUTOEXEC.BAT
file created by the Autoinit procedure is used (and the AML/E
system is installed on the root directory).

System: AML/E menu is displayed:

Bringing Up the AML/E Menu On a PC/AT

If you have a PC/AT with a fixed disk, follow the instructions of the
previous section. If you have a PC/AT with a high-density diskette
drive, then follow these instructions.

You: Open drive A (left drive) on the Personal Computer.

You: Insert your AML/E System Diskette Number 1 into drive A.

You: Set System Unit power switch to ON.

You: When requested, type in the date in the format shown
on the screen.

You: Press the enter) key.

You: When requested, type in the time in the format shown
on the screen.

You: Press the enter (<--- 1) key.

System: AML/E menu is displayed:

After these instructions are performed, the following menu appears.

Chapter 7. Operating the Manufacturing. System 7-17

Select a function:

0. Return to DOS.
1. Edit/Teach a program.
2. Compile a program.
3. Load a program to the controller.
4. Unload a controller program.
5. Set system configuration.
6. Set program name and options.
7. Communicate with controller.
8. Generate Cross Reference Listing.

Enter Option ===>

•

Note: In the steps that follow, the AML/E programs COMPILER.EXE and
COMAID.EXE are called by the AML/E Menu. For a dual-sided diskette
drive system without a fixed disk, the Compiler is located on the AML/E
System Diskette Number 2, and Comaid is located on the AML/E System
Diskette Number 1. If the menu displays the message "UNABLE TO READ
COMPILER.EXE" or "UNABLE TO READ COMAID.EXE", then the wrong diskette is
in the A drive and the correct diskette must be inserted into the A
drive. If your PC has an A and B drive, then each of the AML/E System
Diskettes can be placed in its own drive.

You: Connect the RS-232 communication cable between the Personal
Computer and the Manufacturing System controller.

You: Power on the Manufacturing System and place in
"On Line" mode.

You: At the menu, select function 2.

Select a function:

0. Return to DOS.
1. Edit/Teach a program.
2. Compile a program.
3. Load a program to the controller.
4. Unload a controller program.
5. Set system configuration.
6. Set program name and options.
7. Communicate with controller.
8. Generate Cross Reference Listing.

Enter Option ===>2

7-18 58X7338

•
System: Screen displays: Loading

You: When the screen displays "Enter source file specification:",
type the drive where the source program is located followed
by a colon and the filename of the program. Then press the
enter (<---I) key.

Example:

--> b:programl

In the example, programl is an AML/Entry program located on a
diskette in drive B.

You: Answer the Error Report Hardcopy, Generate Listing File,
and Generate Symbol Table prompts.

If you are not familiar with these prompts, refer to Chapter 2, "Getting
Started on the IBM Personal Computer."

•

Chapter 7. Operating the Manufacturing System 7-19

System: After answering the prompts, as the program is compiling,
the screen displays the following sequence:

Creating Program for Machine Type XXX
Object Module Size =

Reading Input File

Converting AML/E Program

Writing .ASC File

Successful Compilation
Press any Key to continue LINE:xxx

You: If the On line light on the Manufacturing System
control panel is not on, press the On line key.

You: Press any key on the Personal Computer to continue.

You: At the AML/Entry menu select function 3.

Select a function:

O. Return to DOS.
1. Edit/Teach a program.
2. Compile a program.
3. Load a program to the controller.
4. Unload a controller program.
5. Set system configuration..
6. Set program name and options.
7. Communicate with controller.
8. Generate Cross Reference Listing.

Enter Option ===>3

System: Screen displays: Loading

7-20 58X7338

You: When the screen displays "Output Filename ==>" type
the drive where the compiled program is located followed
by a colon and the filename of the program then press
the enter (<--- 1) key.

Example:

--> b:programl

In the example, programl is a compiled AML/Entry program located
on a diskette in drive B.

System: Screen asks for the destination partition (Application
Number):

Destination Partition ==>

You: Type the number 1, 2, 3, 4, or 5 for the partition
where the program is to reside in the Manufacturing System
controller storage.

You: Press the enter) key.

System: Screen displays the program lines (Line xxx) as they are
being transmitted to the Manufacturing System controller.

System: When transmission is completed, the screen displays:

Successful Transmission to Partition x

Strike any key to continue...

System: Menu screen is redisplayed when a key is pressed.

Chapter 7. Operating the Manufacturing System 7-21

TESTING APPLICATION PROGRAMS IN MANUAL MODE

After you have developed an application program and transferred it to
the controller, you may want to step through the execution of the
program one instruction at a time. Stepping through your program allows
you to observe that it performs each function properly and that the
points you have defined are correct.

If you have not already done so, power-up the system and allow the
required 10-minute warm-up time. The following indicators must be lit
when you start this procedure:

• Power

• Manip Power

• Home

To test the application programs, follow the next instructions:

You: At the control panel, press the Off Line key.

System: Off Line LED lights.

You: Press the Manual key.

System: Manual LED lights.

You: Press the appropriate Appl key corresponding to the
partition number for the program stored in the controller.

System: One of the Appl LEDs lights.

You: Press the Step key repeatedly to execute instructions.

System: Each time you press the Step key, a program instruction
is executed. The Step LED lights when the key is pressed.

Note: Some instructions (e.g., SUBRs, LABELs) contain several
internal coded instructions; you need to press the Step key
several times to step through these instructions.

If you press the Step key after the last line of the program has
executed, the program restarts at the first line.

7-22 58X7338

MANUAL OPERATION OF THE MANIPULATOR

Use the following procedures to position any axis by means of the
control panel in manual mode. You may want to use manual mode while you
are checking the height and position for feeders and fixtures, and for
the gripper's (or other end-of-arm effector) ability to hold objects
properly.

Unlike the automatic mode, the manipulator need not be in the Home
position to use the manual control keys.

You: At the control panel, press the Manual key.

System: Manual LED lights.

You: Press the Off Line key.

System: Off Line LED lights.

The Manufacturing System is now ready to be used in manual mode.

Chapter 7. Operating the Manufacturing System 7-23

MANUAL MODE CONTROL OF AXIS MOTORS, Z-AXIS, AND GRIPPER

Eight keys control the manual movement of the Cl axis, the 02 axis, the
Z axis, and the R axis. In addition, the speed for any of the axes may
be increased by simultaneously using the Rapid key with any of the axis
keys.

When using the manual control keys for moving the 01 and 02 axes or a
servoed Z axis, it is possible to move the manipulator beyond the work
envelope. If you do move the manipulator outside the work envelope, the
over-run (OR) LED on the control panel lights. The manipulator stops
its movement when the over-run condition is detected. To clear the
condition, physically move the manipulator back into the work envelope
and press the Reset key to clear the OR indicator or if your system has
the O.R. Reset key, it can be used to clear the condition.

Note: Remember the caution in the beginning of Chapter 6, "Using
the AML/Entry Teach Mode." If this occurs while in the Teach mode
of the AML/E editor, then the manipulator will be moved home by
the controller before being moved to the current location
specified by the Teach screen.

You should have set the control panel for manual mode (see the first two
steps of the previous section). Press the desired Z -Up or Z-Down key.
Refer to "Control Panel," earlier in this chapter, for a description of
the keys.

The optional gripper motion is driven by air pressure. To control the
motion of the gripper in manual mode, you must have the air supply on
and the Manufacturing System power on. You must have the Manual key
active for manual control of the gripper. Refer to the "Control Panel,"
in this chapter, for a description of the keys.

AUTOMATIC OPERATION

If you are not familiar with stopping the manipulator in the automatic
mode, refer to "Stopping the Manipulator", in this chapter, which
describes these four keys:

• Stop

• Cycle Stop

• Stop and Mem

• Step

CAUTION
Clear the work area before starting. Review "Safety" in the front of
this document.

7-24 58X7338

STARTING AN APPLICATION PROGRAM IN AUTOMATIC MODE

This procedure applies to starting an application from the control
panel. Starting an application from a host is described in
Chapter 8, "Communications."

The following conditions must be met before you enter the automatic
mode:

• The application program has been transferred to the controller.

• The following LEDs on the control panel are lit:

— Power

— Manip Power

— Home

— Off line

• Allow the required 10-minute warm-up.

The following procedure starts the system in the automatic mode from the
control panel. Remote start-up is described in
Chapter 8, "Communications."

You: At the control panel, press the Auto key.

System: Auto LED lights.

You: Press the appropriate Appl key where the
application program is stored.

System: LED for the selected APPL key lights.

You: Press the Start Cycle key.

System: Application program starts.

Chapter 7. Operating the Manufacturing System 7-25

RESUMING AN APPLICATION PROGRAM FROM A BREAKPOINT

Use this procedure if you stopped an application program using the Stop
and Mem feature and the Memory LED was lit. The Stop and Mem feature
allows you to power-off the controller and then resume the application
without starting over. If the Memory LED was not lit, the program
stopped at the last line of the application program and you need to use
the "Starting an Application Program in Automatic Mode" section.

If power was removed, you must restore power using the system Power-up
sequence. The Memory LED at the control box goes on when power is
applied.

The following conditions must exist when you wish to resume a program
that was stopped using the Stop and Mem feature:

• Power-up and warm-up complete

• The following LEDs must be on at the control panel:

— Power

— Manip Power

- Home

— Memory

CAUTION
Clear the work area of obstacles between the home position and the
next point of a move execution.

You: At the control panel, press the Auto key.

System: Auto LED lights.

You: Press the Appl number that is to be recalled.
This must be the application in which - the breakpoint occurred.

System: Appl LED is lit.

You: Press the Recall Memory key.

System: Recall Memory LED lights.

You: Press the Start Cycle key.

System: Application program starts execution. The Memory LED
and the Recall Memory LED go off.

7-26 58X7338

DE

OR

CLEARING ERROR CONDITIONS• This section describes how to clear control panel error LED indicators.

If the problems do not clear after following these procedures, refer to
the IBM Manufacturing System Maintenance Information for your system.

PF

♦
1 /

The DE (Data Error) LED lights when the controller
detects an error in the stored application program.

Press the Reset key to clear the indication.

Note: If the Reset key does not clear the DE LED,
turn off at the controller breaker for at least 10
seconds. Turn on the circuit breaker. If the error
occurred during start up, your problem may be the
result of the method used to start the application.
Refer to the "Automatic Operation" section for the
correct sequence of starting an application
program.

Blinking DE (Data Error) LED - To clear a blinking DE
LED, the application program may have to be reloaded.

Refer to Chapter 8, "Communications" for details of
reading error condition at the controller if the
condition repeats.

The PF LED lights when the controller has detected an
interruption or drop in the line power.

At the controller, set the power switch to the 0 (off)
position. Wait at least 10 seconds and then set the
switch to the I (on) position.

The OR LED lights when the manipulator has moved out of
the work envelope.

Physically move the manipulator el or 02 axis back into
the work envelope. Press the Reset key; then press the
Manip Power key.

If your manipulator has an O.R. Reset:

Chapter 7. Operating the Manufacturing System 7-27

OT

You: Press and hold the O.R. Reset key.

You: Press the Mardi) Power key.

You: Return the axis causing the overrun back within its
travel limits by using its axis key. The O.R. Reset
light goes off when the axis is back within the work
envelope.

You: Press the Reset Error key.

Note: The 01 or 02 axis can still be returned
back into the work envelope by hand without using
this procedure.

Refer to Chapter 8, "Communications" for details on
reading error condition at the controller if the
condition repeats.

The OT LED lights when a timer function detects an
overtime condition. One of the instructions in your
program is waiting for a DI switch condition that does
not occur within the time limit specified.

Refer to Chapter 8, "Communications" for details on
reading error condition at the controller if the
condition repeats.

The SE LED lights when a servo error has occurred on any
axis. The SE LED flashes when a encoder error has
occurred on any axis.

Press Reset to clear the indication. If the indicator
stays lit or continues to flash, refer to the IBM
Manufacturing System Maintenance Information for your
system.

7-28 58X7338

TE The TE LED lights when a transmission error has occurred
between the Personal Computer and the controller.

If the problem occurred during a program transfer, press
the Reset key to clear the indication. Refer to
"Controller Memory Management" in this chapter for
possible solutions.

Refer to the Chapter 8, "Communications" for details on
reading error condition at the controller if the
condition repeats.

If the condition occurred during the change from On Line
to Off Line, press the Reset key to clear the
indication. This is not a program transmission problem.

Chapter 7. Operating the Manufacturing System 7-29

7-30 58X7338

Rear view

S1/4000000 0000 0 00)

lO
0000e ••00000

25 Pin connector

Controller Communications Connector

The 25-pin connector on the controller with the label Cl RS232C is the
connector for the communications interface. Some pins in the connector
have special meanings for RS-232 communications and some have special
meaning for RS-422. The cable you connect activates the correct
interface. For example, the RS-422 cable connects pin 18 in the
controller connector to ground, which tells the controller to use the
RS-422 interface. For the cable wiring diagrams, refer to
Appendix F, "Communications Cable Wiring Diagrams."

Communication Startup Sequence

1. The controller On-Line LED is lit.

2. The host raises "data terminal ready."

3. The host waits for the controller to raise "data set ready"; this
should happen immediately.

4. Startup is complete.

After startup is complete, the operator control panel only responds to:

• Manipulator Power On

• Reset Error

• Off-line (This drops the controller DTR at the end of a transaction
or immediately if no sequence is in process)

• Emergency power off

The controller side of the cable should have RTS wrapped back to CTS

Chapter 8. Communications 8-3

COMMUNICATION CAPABILITIES

Because the manipulator is controlled by a special controller, a
communications interface exists so that the IBM Personal Computer or the
IBM Industrial Computer can talk with the controller. The IBM PC or
Industrial Computer is called the "host" computer. The "host" can
initiate a wide variety of communications requests to which the
controller responds. Downloading a compiled AML/Entry application, as
discussed in Chapter 7, "Operating the Manufacturing System," is an
example of a communications request. All of these requests can be
performed by the user from his IBM terminal by using Comaid (see
"COMAID" on page 8-14). The AML/Entry communications requests include:

• Download Request

This request downloads a .ASC file to any of the five controller
partitions. The .ASC file must come from the AML/Entry compiler, as
this contains the format of the records needed by the communications
request. Attempting to download a .AML file will cause an error.

• Unload Request

This request unloads a controller partition. It is possible to
download a .ASC file and overwrite an existing file within a
partition. By performing an unload request, the application key on
the control panel corresponding to the unloaded partition will be
deactivated, as will the Execute communications request that selects
the unloaded partition.

• Read Request (R record protocol)

An often used request, this allows the host to read values from the
controller. Some of the read requests read values pertaining to a
running application; others read values pertaining to the state of
the manipulator. The AML/Entry Read requests include:

- Read Machine Status -- This reads error information when an
error has occurred in a running application (e.g., a data error
or AML/Entry error).

- Read Reject Status -- This reads the error code for a
communications error. When a communications error occurs
because the host has requested an invalid communications request
(for example an Unload request when the given partition does not
contain an AML/Entry application), the controller will send an
Eot (reject data) signal to the host. This Read request will
give further information as to why the Eot was sent by the
controller.

— Read Micro-Code Level and Machine Type -- This request returns
three values. The first two values contain the major and minor
microcode level numbers, the third value contains the machine
type.

8-4 58X7338

Read Robot Parameter Table -- This request returns twelve values
which characterize the attached manipulator. See "The Other
Read Transactions" on page 8-43 for a list of the twelve values.

- Read Instruction Address -- This request returns the current
hardware instruction address in the current application. By
generating a listing file when the AML/Entry program is
compiled, it is then possible to determine where in the original
AML/Entry program the controller actually is.

Note: The AML/Entry compiler uses an internal subroutine
that performs any manipulator motion, regardless of the
actual AML/Entry command that invokes the motion. Reading
the instruction address will return the address of the
internal subroutine when this request is performed during
or immediately after manipulator motion.

- Read Digital I/O -- This request returns the state of all the
digital I/O attached to the manipulator system.

— Read All Program Variables -- This request returns the values of
all the variables in controller memory for the current
application.

- Read Current Manipulator Position -- This request returns the
location of the manipulator in terms of the motor encoder
pulses. The user must convert these to the actual X, Y, Z, and
Roll coordinates.

— Read Specific Program Variables -- This request also reads the
values of variables in controller memory for the current
application. This request, however, allows the user to specify
which variables to read. For large applications, this is far
more efficient than reading all the program variables.

• Execute Request (X record protocol)

This request allows the user to control the state of the manipulator
via communications. Virtually all of the keys on the control panel
have a corresponding Execute request. Thus rather then having to
require an operator to strike keys on the control panel, this can be
done remotely via communications. A list of the Execute requests
can be found in "X - Transmit Execute Command" on. page 8-16.

• Control Request (C record protocol)

This request gives the user the ability to control the current
application. Whereas Execute requests control , the state of the
manipulator,. Control requests require a current application. The
available Control requests include:

- Suspend Program Execution -- This request suspends program
execution as soon as possible. Any motion must complete before
this Control request is honored.

Chapter 8. Communications 8-5

- Restart Program Execution -- This
execution after it has been suspended
request.

request restarts program
with the preceding Control

- Execute Until Next Terminator -- This
user to single step through the appli
the Step Execute request.

Control request allows the
cation. This is similar to

- Set Debug Breakpoint -- This request allows the user to set up a
breakpoint in the existing application. The address given
should be obtained from a listing that is generated by the
AML/Entry Compiler. Once a breakpoint is set, the host is noted
of its occurrence by a controller initiated communication
transaction. In order for this to be properly received, data
drive mode must be entered. See "Data Drive Mode" on page 8-8
for a discussion of data drive mode.

- Reset Application -- This request resets the controller. It
clears all errors, resets all communication timers, deselects
the current application, and places the controller in manual
mode. Sometimes this is the only way to stop an application
from running.

- Change Variables in Memory -- This request allows the host to
asynchronously change any of the variables in the controller
memory. Points, regions, pallets, counters, and groups can all
be changed. The user must use the XREF program to determine the
variable numbers in controller memory each AML/Entry variable
occupies.

• Teach Requests (T record protocol)

This request allows the user to move the manipulator without
compiling, downloading, and starting an AML/Entry program. The user
may move the manipulator to a new point, set the LINEAR, PAYLOAD,
and ZONE parameters for any future motion started by a Teach
request, turn on or off any digital output, or switch the arm
configuration from right to left or vice versa (for the 7545-800S
only).

Warning: Using Teach requests and the control panel at the same
time is likely to cause the manipulator to move to home
unexpectedly. Whenever a Teach request is sent, if any of the
axis movement keys has been touched, the manipulator will move
home before honoring the Teach request.

• Enable/Disable Data Drive Mode

AML/Entry provides a feature called controller initiated
communications. This feature makes the controller the initiator of
any communications transaction. For example, when an existing
application encounters a GET or PUT statement, a controller
initiated data drive transaction begins. Another example of a
controller initiated data drive transaction is when a debug
breakpoint is encountered. When either of these three events

occurs, the controller initiates a communications transaction by
sending a message to the host.

With the current communications protocol, only the host or
controller can be enabled as the initiator of communications. When
the system is powered on, the IBM Personal Computer or Industrial
Computer is made the initiator. This means that all of the
communication requests described in the preceding list can be
performed. But once data drive mode is enabled, the controller is
made the initiator of any requests. If the host tries a
communications request when the controller is the initiator, an
error will occur (the controller will send an Eot back to the host).
If the controller reaches one of the three situations that cause a
controller initiated request to begin and the controller is not the
initiator, then a wait state is entered. Once data drive mode is
enabled, the controller initiated communications request will occur.
The host can turn off data drive mode at any time, enabling itself
as the initiator.

The important thing to remember is that only the host or the
controller is enabled as the initiator. Originally the host is
enabled. To perform controller initiated data drive, the controller
must be enabled. While the controller is enabled, all requests by
the host are rejected until data drive mode is disabled, enabling
the host as the initiator.

Most users will not need to learn the AML/Entry communications protocol
because AML/Entry Version 4 provides two programs that give the user two
different levels of interface to the communications transactions.
Comaid provides the user a menu-driven interface to the above
communication requests. Comaid may be invoked by selecting option 7
from the AML/Entry menu. AMLECOMM provides the user a "device-driver"
level of interface. AMLECOMM consists of BASIC modules which may be
imbedded into a user cell controller applications. By calling the BASIC
modules, any of the communication requests can be performed. For the
more curious user, Appendix H, "Advanced Communications" contains a
technical description of the communications protocol, along with sample
transactions. This appendix should only be read by users who cannot use
AMLECOMM and must write their own program to perform the host side of
the communications protocol.

Chapter 8. Communications 8-7

DATA DRIVE MODE

As just discussed, when the system is first powered up, the IBM PC, or
host, is the initiator of all communications requests. In order for the
controller to be the initiator of communications requests, data drive
mode must first be enabled. When data drive mode is enabled, only the
controller can initiate communications requests. It will do so when a
GET, PUT, or debug breakpoint is encountered. If any of these three
events occurs and the controller is not the initiator of communications
requests, then the controller enters a wait state. In terms of the
communications protocol, these states are called the Xon state, Xoff
state, Wxo (Waiting for Xoff) state, and the Xto (Xoff time out state).
These are discussed in greater detail in this section.

Controller States

The controller is considered to be in one of two communication states,
the Xon state or the Xoff state. The Xoff state has two sub-states,
Xoff Time-Out (Xto) and Waiting For Xon (Wxo). The Xon state is entered
when the host sends an Xon signal to the controller. This signal tells
the controller that it may initiate a communications request. The Xoff
state is the initial state in which the host is the initiator of
communications requests. The two Xoff substates occur when the
controller hits a GET, PUT, or debug breakpoint and the host is still
the initiator of communications requests. The Wxo mode is entered.
Then, unless an Xon signal is received within 30 seconds, the Xto error
state is entered.

Xon State

In the Xon state, the controller is allowed to initiate communications.
When in the Xon state, the controller returns an Eot with the status set
to code Al for all host-initiated communication. While in the Xon
state, should a GET, PUT, or debug breakpoint be encountered by the
running application, a communications request is initiated by the
controller. The actual data sent across the communications line is
discussed in Appendix H, "Advanced Communications." The details of this
can be avoided if AMLECOMM is used. See the discussion of AMLECOMM
later in this chapter.

Xoff State

In the Xoff state, the controller cannot initiate communications. It
responds only to host communication requests.

8-8 58X7338

Waiting for Xon (Wxo) State

' The controller enters the Wxo state if it needs to initiate a
communications transaction (e.g., GET, PUT, or debug breakpoint
encountered) but cannot, since it is in an Xoff state. The Wxo state
waits 30 seconds for an Xon.

Xoff Time-Out (Xto) State

The controller enters the Xoff Time-Out state when the Wxo state times
out (when the 30 second timer expires). Although this is an error
state, host communications are allowed.

Transitions Between States

There are additional rules governing the transition from one state to
another.

Simple State Transitions

Simple state transitions govern the transitions between the Xon and Xoff
state. All other state transitions are governed by the new rules for
complex state transitions.

When it is powered on, the controller is in the Xoff state. It only
enters the Xon state when it receives an Xon from the host. If the
controller receives an Xon while in the Xon state, it ignores the
received Xon. When it receives an Xoff from the host, the controller
enters the Xoff state. When the controller is in the Xon state, it can
begin a communications request at any time. It begins a request by
sending a special record called a D record. Should the host send an
Xoff signal at the same time that a D record is sent by the controller,
or should the host send an Xoff instead of acknowledging the D record
according to the requested protocol (see Appendix H, "Advanced
Communications"), then the Xoff is honored by the controller and the Wxo
mode is entered. When the host sends the Xon, provided this is done
within 30 seconds so the Xto mode is not entered, the controller resends
the D record that begins the controller initiated communications
request.

Note: The data drive scenario just discussed requires microcode
level 15 or 16. If a lower level of microcode is installed and an
Xoff is sent after the controller sends a D record indicating the
start of a communications request, then manipulator power will be
lost. The error code returned would be 48 (Hex 30),
Communications Not Established (unable to GET/PUT). To avoid
this, the host application should only-send an Xoff when it knows
that the controller will not attempt to simultaneously begin a
communications request.

If an Xoff is received while in the Xoff state, it is ignored. If the
controller is in the Xon state, and the operator presses the "off-line"
key, the controller enters the Xoff state, It automatically transmits

Chapter 8. Communications 8-9

an Eot when this event occurs. When the "off-line" key is again
pressed, the Eot code is changed to 'AA'.

Complex State Transitions

When the controller encounters a situation where it needs to initiate
communications (executes a GET), but the controller is in the Xoff
state, it is referred to as "frustrated initiation". In this case, the
following rules apply:

1. The controller waits up to 30 seconds for an Xon to be received.
This is the Wxo (waiting for an Xon) state

• If an Xon is received, the controller enters the Xon state and
initiates its communication.

• If any other communication is received, the controller may
respond to it. There are two classes of communication requests,
allowed and not allowed. If you attempt to perform an operation
that is not allowed, an Eat error with an 'A2' code
(communication not allowed) results. Transactions allowed
during this state are:

All Read (R) Record operations

Execute (X) Record operation
13 - Reset error

Control (C) Record operations
10 - Install debug address stop
20 - Reset controller
80 - Change controller variables

Note: The thirty-second timer is reset by performing
these host communication operations.

2. If the 30 seconds expires, the controller enters the Xto (Xoff
Time-Out) state and the transmission error (TE) lamp comes on.

The following rules govern the Xto (Xoff Time-Out) state.

1. If an Xon is received, the controller returns an Eot and the Eot
status is set to AO (Xto mode).

2. If any other communication is received, the controller may respond
to it. There are two classes of communication requests, allowed and
not allowed. If you attempt to perform an operation that is not
allowed an Eot error with an A2 op-code (communication not allowed)
results. Transactions allowed during this state are:

8-10 58X7338

All Read (R) Record operations

Execute (X) Record operation
13 - Reset error

Control (C) Record operations
10 - Install debug address stop
20 - Reset controller
80 - Change controller variables

3. If the error is reset (either from the control panel or by usin g

communications) and enters the Xoff Error Reset state, the
controller restarts the thirty-second timer and waits for an Xon.
The controller has re-entered the Wxo (waiting for Xon) state.

Comaid provides a very friendly data drive interface. The followin
application uses a GET statement to fetch two points that the
manipulator moves between, and a PUT statement to send to the host
counter that indicates the number of moves performed by the manipulator.
The data drive is only performed if the counter DO_DATA_DR is set to 1.
Initially this counter is set to 0, so the GET and PUT instructions are
not performed. By using Comaid, change variable 34 (which corresponds
to DO_DATA_DR) to 1. Once this is done, the GET and PUT statements will
be performed. The PUT statement sends a value for variable number 35
(which corresponds to the counter NUM_MOVES). The GET statement
requests values for variables 36-43. The first four values correspond
to the X, Y, Z, and Roll locations for the first point. The second four
values correspond to the X, Y, Z, and Roll locations for the second
point.

-- Sample program to illustrate Data Drive

DO_ DATA DR: STATIC COUNTER;

NUM_MOVES: STATIC COUNTER;
TWO POINTS: STATIC GROUP(PT(400

-- When 0, the GET and PUT are not
-- performed. When 1, they are.
-- Counts the number of PMOVES
,400,0,0) , PT(-400,400,0,0));
-- Robot moves between these points

Chapter 8. Communications 8-11

MAIN:SUBR;
PMOVE(TWO POINTS(1));
SETC(NUM ROVE S,NUM_MOVES+1);
TESTC(DO—DATA DR,O,NOPUT);

PUT(NUR_MOVES);
NOPUT:

PMOVE(TWO POINTS(2));
SETC(NUM ROVE S,NUM_MOVES+1);
TESTC(DO—DATA DR,O,NOGET);

GET(TWO_POINTS);
NOGET:

END;

-- Move to first point
-- Increment NUMMOVES
-- Don't do PUT if DO DATA_DR=0
-- Send NUM_MOVES to host

-- Move to second point
-- Increment NUM_MOVES again
-- Don't do GET if DO DATA_DR=0
-- Fetch two new points

-- End of application

To run the application and at the same time better understand controller
initiated data drive, follow these steps:

1. Enter the program into a file.

2. Compile the program with the AML/Entry Compiler. Request the symbol
table file so that the XREF program can be used to generate a cross
reference listing of the program variables by their numbers.

3. Select option 8 from the main menu to run the XREF program. Verify
that the variable numbers indeed match those listed above.

4. Choose option 4 to download the compiled program to partition 1.

5. Start the application. See Chapter 7, "Operating the Manufacturing
System." Let the application run a minute or so to allow the counter
NUM MOVES to accumulate.

6. Choose option,7 from the AML/Entry menu to invoke Comaid.

7. Choose option D to enter the data drive menu and select option 99 to
prepare for a GET.

8. Enter values for variables 36-43, which will correspond to two new
points between which the manipulator will move.

9. Exit the data drive menu and return to the communications menu.

10. Choose option C to enter the Control Commands menu.

11. Choose option 80 to change variable 34 to a value other than O.

12.Note that as soon as this is done, the manipulator stops moving.
This is because either the GET or PUT statement has now been
encountered and the controller wants to perform a controller
initiated communications request. The controller is now in the Wxo
state.

13. Choose option D to enter the data drive menu.

14. Select option 02 to send an Xon signal to the controller. Once this
is done, either the GET or PUT command will be performed, either
causing the values you entered for variables 36-43 to be sent to the
controller or causing the value for variable 35 to be sent to the
host. (Choose option C when Comaid prompts you since you have
already prepared your data to be sent to the controller).

15. Comaid will now loop indefinitely, printing the requests from the
controller as they arrive. Notice how the GET and PUT commands are
flashed on the screen as they arrive from the controller. When a
key is struck, an Xoff is sent to the controller and data drive mode
is exited. This reinstates the host as the initiator of any
communications requests.

16. If the above steps were done correctly, the manipulator will have
been moving between the two new points you specified when you
prepared for the GET, but when data drive mode was exited the
manipulator stopped. This is because the controller is in the Wxo
state, either wanting to perform the GET or PUT instruction.

8-12 58X7338

17. If you wait 30 seconds, the TE light will come on. This is because
the Xto mode has been entered.

18. Now choose option C followed by option 80. Change variable 34
(DO_DATA_DR) back to O. Thus controller initiated data drive
requests will be disabled.

19. Now choose option X followed by option 13. This Execute comman
resets the Xto error and returns the controller to the Wxo state.

20. Now enable data drive once again by choosing option D followed by
option 02. This sends an Xon signal to the controller. The Wxo
mode is exited and the data drive command that is blocking the
controller is performed.

21. Note now that as Comaid loops indefinitely, the GET and PUT messages
are not flashing on the screen. This is because DO_DATA_DR has been
set back to 0, disabling the data drive.

22. Strike a key at any time to exit data drive mode and reinstate the
host as the initiator of all communications requests.

23. If you choose option D from the communications menu, followed by
option 98, you can display variable number 35 sent from the
controller. The value will be the number of moves (NUM_MOVES) that
had been performed when the last PUT command was encountered.

24. The above steps can be repeated as often as desired.

Chapter 8. Communications 8-13

COMA ID

Comaid is the 7th option from the AML/E Main Menu. It is a program that
provides the user a menu driven communications interface to the
controller. The main menu is shown in the following figure.

COMMUNICATIONS MENU

Choose one of the following:

P - Display last 51 communication transactions
L - Load a Program to the Controller
U - Unload Controller Partition
R - Transmit Read Command
X - Transmit Execute Command
D - Controller Initiated Communications
C - Control Executing Program
T - Transmit Teach Command
F - Execute a Command File
E - End Program

Select an option _

To perform a communication request with the controller, the user must
first learn the submenus. For instance, to send the manipulator home
requires an Execute Command, to turn on a DO port requires a Teach
Command, and to set a debug breakpoint requires a Control Command. In
the sections that follow, each of the options of this primary menu will
be covered in greater detail.

P Display the last 51 communication transactions

As the user performs communications requests with Comaid, information is
being sent between the controller and the personal computer. As
information is sent or received, it is placed in a "circular"
communications buffer capable of holding 51 elements. That is, when the
51st element of the buffer is filled, the first element is overwritten
with the next request, then the second element, etc. The user thus can
always look at the last 51 transactions. Seventeen transactions are
displayed at a time, until all 51 have been displayed.

The P option also allows the communications transactions to be printed
on the printer. After the P option is selected, you will be asked if
you would like the communication transactions also printed on the
printer. If you select yes (option "Y") and the printer is not
functional for any reason, then the message "Printer not available -
hardcopy request cancelled" will appear on the screen.

Note: Sometimes, there will be as long as a 30-second delay
before this message appears.

8-14 58X7338

To ease the viewing of the communication transactions, Comaid places
line of dashes (----) in the buffer every time a new request is begun
A line of dashes is also placed into the buffer every time a new dat
drive request is initiated by the controller when data drive mode
enabled.

L Load a Program to the Controller

This option allows the user to download a compiled AML/E program to th
controller. The user is prompted for a filename and a partition. Th
filename must have a .ASC extension. Comaid will assume this as th
default file extension if none is given. A file may not be downloade
with an extension other than .ASC. Comaid does not check that th
compiled program was indeed compiled for the manipulator that
attached. The partition must be 1, 2, 3, 4, or 5.

If the specified file does not exist, the user is prompted for anothe
file. A carriage return will abort the load request.

As the file is downloaded, the current line number of the .ASC file is
printed on the screen.

U - Unload Controller Partition

This option allows the user to unload a controller partition. The user
must enter either a valid partition number (1, 2, 3, 4, or 5), or "ALL".
Selecting a single partition number will cause only that partition to be
unloaded. Selecting "ALL" will cause all 5 partitions to be unloaded.

R - Transmit Read Command

This option allows the user to read different values from the
controller. When this option is selected, a submenu immediately
appears. The options available are:

VALID READ COMMANDS ARE:

00 - Return to the Communications Menu
01 - Read machine status
02 - Read reject status
03 - Read microcode level and machine type
04 - Read robot param table
08 - Read current instruction address
10 - Read DI/DO
20 - Read all program variables
40 - Read position in pulses
80 - Read specific program variable(s)

•
Chapter 8. Communications 8-15

Only option "80" requires further input. All the other options perform
the read request as soon as they are selected. The result of the read
request is displayed on the screen in a user friendly format. For
example, reading the machine or reject status will result in a message
being printed which is the definition of the status code that the
controller returns.

Option "80" prompts for the starting variable to be read and the number
of variables to be read. The variable number that is entered is
produced by the AML/E cross reference program (XREF). For example, if a
counter C is indicated as variable number 48 by XREF, then to read the
value of C, one would enter 48 for the variable number and 1 for the
number of variables to be read. If more variables are requested than
the number that actually exist in the current application, then only the
actual number of variables that exist will be displayed. For example,
if the existing application has 100 variables (numbered from 0-99), and
the user requests 50 variable to be read starting from variable number
75, then only variables 75-99 will be displayed. If no variables exist
in the range given by the user (i.e., the starting variable is greater
than the actual number of variables in the current application), then no
variables are displayed. Entering 0 for both the starting offset and
the number of variables will cause all the variables in the current
application to be read.

Note: Comaid only reserves storage space for 400 variables. Thus the
user should never ask for more than 400 variables to be read. Likewise,
if option "20" is used to read all the program variables, an error will
occur if the existing application contains more than 400 variables. If
this occurs, then the variables must be read 400 at a time.

X - Transmit Execute Command

This option gives the user the ability to control the state of the
controller from the host. Virtually all the buttons on the control
panel have a corresponding X command which will perform the identical
action from the host. When the X option is chosen, the following new
options appear as a submenu:

8-16 58X7338

VALID EXECUTE COMMANDS ARE

00 - Return to the Communications Menu
11 - Return home
12 - Recall memory
13 - Reset error
20 - Auto
22 - Start cycle
23 - Stop cycle
24 - Stop and memory
25 - Step
31 - Application 1
32 - Application 2
33 - Application 3
34 - Application 4
35 - Application 5

None of the X commands require further input. When they are selected,
their action is performed. For many of the X commands, a delay will
exist from when the option is selected until when the command has
actually completed executing. For example, the Return Home (option
"11") and Stop Cycle (option "23")" can be virtually instantaneous or can
take over a minute to complete.

D - Controller Initiated Communications

This option is chosen either when

1. The running application performs controller initiated data drive
(i.e., a GET or PUT statement is used).

2. A debug breakpoint is set by using Control Command 10.

When this option is chosen, a new submenu appears as follows:

VALID COMMANDS ARE:

00 - Return to the Communications Menu
01 - Disable Data Drive (send an Xoff)
02 - Enable Data Drive (send an Xon)
98 - Display values received from controller by a PUT
99 - Prepare for GET

Note: The option "98" is chosen to display values that have been
sent from the controller by a PUT statement. If a PUT has not yet

Chapter 8. Communications 8-17

been encountered, this option will not appear; only after a PUT
has been encountered will this option become available.

The controller is enabled for data drive by sending an Xon (option
"02"). Once the Xon is sent to the controller, the host can no longer
perform communication requests because the controller is enabled as the
initiator (hence controller initiated communications), the host hooked
to the controller is the slave. Since the host cannot initiate any
communications transaction to the controller once an Xon is sent,
control does not return to the main menu. Instead, Comaid loops
indefinitely, printing the following messages:

In Data Drive Mode
Strike any key to exit Data Drive mode
Last Data Drive operation was: GET - variables 34 - 37

PUT - variable 38
GETC - variable 37
DEBUG

Note: Comaid supports the GETC instruction of AML/Entry Version
3. This instruction does not exist in AML/Entry Version 4, and
has been replaced by the GET instruction.

The variable numbers shown above are examples. The actual values will
differ, based on the actual GET, PUT, or GETC instruction encountered.

Once data drive mode is enabled, the host can only regain control from
the controller if an Xoff is sent. Comaid thus loops until the user
strikes any key. Upon striking a key, an Xoff is sent to the controller
and data drive mode is exited. The user should strike the key to send
an Xoff when the application is not near a GET, PUT, or the debug
breakpoint. This is one reason that the data drive requests are
displayed as they are received from the controller. By doing this, the
user can monitor the application, so the key can be struck at the proper
time.

Because the user only has 30 seconds to respond to a GET request, the
user first prepares for a GET (or GETC). When option "99" is selected,
the user is prompted for the values to be sent to the controller when a
GET (or GETC) is requested. The values are later sent when the
controller performs its request. Once the Xon is sent to the
controller, any GET or PUT statement that is reached will be performed
immediately. Thus the user must prepare for any GET the controller may
perform. Option "99" can be selected as many times as necessary to load
values that will be sent to the controller. The values that are entered
remain valid until they are changed. Thus if data drive mode is exited,
and entered after other communications requests, the values that were
entered previously via option "99" are still in effect.

If variables are received from the controller via a PUT command, after
exiting data drive the user may display the values sent from the
controller by selecting option "98".

Note: To use the AML/E Version 4 controller initiated data drive
(GET/PUT), level 15 or 16 microcode must be installed. If a lower

8-18 58X7338

level is installed, then upon exiting data drive mode, manipulator power
is likely to be lost.

Note: The data drive feature of Comaid will only work for the first
400 variables of an application. Data drive will not be correctly
performed if a GET or PUT accesses any variable beyond variable number
400. If a PUT request accesses variables beyond variable number 400,
then the values are not accessible by the user. If a GET request
requires variables beyond variable number 400, only variables up to
variable number 400 receive a value from Comaid. Thus variables that
the controller has requested will not be given a value, and a
transmission error (TE) occurs.

C - Control Executing Program

This option is chosen when the user wants to "control" the executing
application. The options are the AML/E Version 4 Control requests.
They appear in a new submenu:

VALID CONTROL COMMANDS ARE:

00 - Return to the Communications Menu
01 - Suspend program execution
02 - Restart program execution
04 - Execute until next terminator encountered
10 - Set debug address stop
20 - Reset Application Program
80 - Change value of variables in controller memory

Two of the control options require further input data. To set a debug
breakpoint (option "10"), the user must enter the address where a
breakpoint will be set. This address can be gotten from the left hand
side of the .LST file created by the AHL/E compiler when the AML/E
program was compiled. Once a breakpoint is set, the controller will
stop before the AML/E statement at the specified address is executed.

Note: Compiled AML/E programs use a hidden internal subroutine
to perform all motion (i.e., PMOVE, MOVE, DPMOVE, GETPART,
XMOVE). Internal address 72 corresponds to the actual motion
statement of this internal subroutine. To make the program break
immediately before motion to the next point, set a breakpoint
address of 72.

Changing the values in controller memory (option "80") also requires
additional data. The user gives the starting variable number (as
indicated by the XREF program), the number of variables to be changed,
and then each value. When all the data has been entered, the values are
sent to the controller.

Chapter 8. Communications 8-19

Note: As with the R 80 command, only 400 variables may be sent to the
controller per request using option "80". When more than 400 variables
mast be sent, break the request into several requests, each containing
less than 400 variables.

T - Transmit Teach Command

This option gives the user the ability to move the manipulator, change
the motion settings, or activate/deactivate the digital outputs. A new
submenu appears when this option is selected:

VALID TEACH COMMANDS ARE:

00 - Return to the Communications Menu
01 - Teach a new point
65 - Turn a DO port ON or OFF
68 - Set linear
69 - Set payload
6A - Set zone
4E - Switch to right mode (7545-800S only)
4F - Switch to left mode (7545-800S only)

Almost all the Teach options require further data. The only exceptions
are options "4E" and "4F". When teaching a new point, the user enters
the X, Y, Z, and roll coordinates. When specifying a digital output
(DO), the user enters the port number and a 0 or 1 (off or on). When
specifying linear, payload, or zone, the user enters the integer value
to be used. Remember the following ranges:

Parameter Range

LINEAR 0-50
PAYLOAD 0-19
ZONE 0-15

Options "4E" and "4F" are only valid for the 7545-800S, because this is
the only manipulator that is symmetrical. An Eot will result if either
of these is chosen when a standard 7545 or a 7547 is installed.

F - Execute a Command File

This option allows the user to place sequences of commonly used commands
into a file and then execute the commands in the file. The commands are
executed from the file in sequential order, with no user interaction
required. When the end of the command file is reached, the user then
strikes a key to return to the main menu. Virtually all of the commands
are allowed to appear in a command file. The only exceptions are:

• Data drive commands may not be used (the D option).

8-20 58X7338

• A debug breakpoint may not be set (the C 10 option).

• The communications buffer may not be printed (the P option).

• A command file may not be started from within a command file (the F
option).

The following is a command file that will start an application named
FASTEN.AML in partition 1.

C 20
U 1
L FASTEN 1
X 11
X 20
X 31
X 22

Reset Controller
Unload Partition 1
Download FASTEN.ASC to partition 1
Return Home
Automatic Mode
Select Application 1
Start Cycle

The commands appear just as they would be entered into Comaid
interactively. These commands are entered into a file with the AML/E
editor. For example, these lines could be placed into a file named
FASTEN.BEG (begin fasten). Then by selecting the F option from the
Comaid menu and entering FASTEN.BEG as the command file to be used,
these command will be executed.

As the commands are processed, the results are scrolled on the screen
instead of being printed in a menu-like style. The user can include
comments following each request by using two dashes as in the AML/E
language. This is strongly recommended so the user can more easily
monitor the actions of the command file.

DOS Command Line Processing

The user may use Comaid to invoke a single request and immediately
return back to DOS. The user simply gives the parameters, as they would
be entered if run interactively, following Comaid on the DOS command
line. Spaces are used to separate entries. For example, to download
the file FASTEN.ASC to partition 1, the following would used:

COMAID L FASTEN 1 -- Download FASTEN.ASC to partition 3

As shown, a comment may be given on the command line -- indicated by two
dashes, as in the AML/Entry language.

Almost all of the Comaid options may be given on the DOS command line.
The only exceptions are

• Data drive may not be used (the D option).

• Setting a debug breakpoint may not be used (the C 10 option)

• The P option to print the communications buffer may not be used.

Chapter 8. Communications 8-21

A command file can be invoked from the DOS command line. So instead of
just downloading the file FASTEN.ASC, one may start it running by using
the above command file with the instruction

COMAID F FASTEN.BEG -- Start Command File FASTEN.BEG

8-22 58X7338

DEBUGGING MLA APPLICATIONS

Once an AML/E application has been downloaded to the controller, it may
be executed. However due to the complexity of robotic applications,
there will probably be errors in the AML/E program. These errors are
run-time errors that the compiler cannot catch at compile-time. The
error may be an application error (e.g., the program is not doing what
it is supposed to, yet continues to run), or a controller error (e.g.,
servo error). Locating the errors in the original program and
correcting them is called "debugging" the program. This section
describes how to use Comaid to debug application programs.

Using Read Requests

Three of the Comaid read requests are particularly valuable when an
error occurs, they are:

• Read machine status

• Read current instruction address

• Read specific program variables

Reading the Machine Status

The most common errors in an AML/Entry program are AML/Entry errors and
Data Errors. AML/Entry errors occur when an application uses a value
that is illegal in the . AML/Entry context in which it is used (e.g.,
using an invalid index for a group). Data errors occur when the
application program uses a value that is illegal for the controller
(e.g., division by zero). When the machine status is read, one of eight
messages will be printed by Comaid. The messages correspond to the
different errors that could have occurred in the controller. They are:

• No Machine Status Errors -- There is no error in the controller.

• Servo error -- The servos of the manipulator became constrained
during a move; so power was shut down to protect the manipulator.

• Power failure -- The manipulator has lost power.

• Overrun -- The manipulator is not in the work area.

• Transmission error -- A communications error has occurred while
talking to the host.

• Over Time -- A WAITI instruction has reached its time limit, and no
label was given.

• AML/Entry error -- the AML/E program used an illegal value for
AML/E.

• Data error -- the AML/E program used an illegal value for the
controller.

Chapter 8. Communications 8-23

When an AML/Entry error occurs,

the DE (Data Error) light on the operator panel will become lit and
power will be lost. In addition to printing that an AML/Entry error
occurred, Comaid will also print what caused the error. For AML/E
Version 4, there are 7 AML/E errors:

• Part number too small for pallet -- The part number for pallets must
be greater than O. This will only be generated by the SETPART
command, since this is the only command that can initialize a part
number. If communications are used to change the current part
number, no error test is done to make sure the part number is legal.

• Part number too large for pallet -- The part number for pallets must
be less than or equal to the number of parts in the pallet. This
will only be generated by the SETPART command, since this is the
only command that can initialize a part number. If communications
are used to change the current part number, no error test is done to
make sure the part number is legal.

• Invalid index for a group -- The index for a group must be greater
than 0 and less than or equal to the number of points or counters in
the group being referenced.

• Communications not established (unable to GET/PUT) -- This occurs
when the controller encounters a GET, PUT or debug breakpoint, and
either the controller is off-line, the communications cable is not
attached, or the DSR signal is inactive. As long as Comaid is
running, the DSR signal remains active. This usually occurs when
the controller is off-line. If level 15.0 or lower microcode is
installed, this can also occur when the user exits data drive mode.

• Invalid index for FROMPT function -- The second value in the FROMPT
function must be 1, 2, 3, or 4. The actual index that caused the
error can also be read using option "80" of Comaid. It resides in
variable number 6. (Manipulator power will have to be turned on and
the correct application selected if R "80" is to-be used).

• Square root of a negative number -- The argument for the square root
function must be non-negative. The actual index that caused the
error can also be read using option "80" of Comaid. It resides in
variable number 4. (Manipulator power must be turned on and the
correct application selected if R "80" is to be used).

• Invalid arguments for the ATAN2 function -- Both arguments for the
ATAN2 function were zero.

Data errors will also cause additional information to be printed by
Comaid. There are 11 possible data errors; however only the following
four would likely appear. If any other data error appears, try powering
off the controller for 10 seconds, powering it back on, and reloading
the application program. If the data error can be reproduced, contact
your IBM Field Representative.

8-24 58X7338

• Arithmetic error -- This occurs when an expression causes
numerical error in the controller. This can happen when the TAN of
90 degrees is taken or division by 0 occurs, for example.

• Invalid op-code -- This should only appear if a program that was
compiled for the 7545-800S manipulator that contains a LEFT or RIG
command is downloaded by mistake to a 7545 or 7547 . manipulator.

• Invalid port number -- This appears if a port number was referenced
in a sensor command that is illegal (i.e., less than or equal to
zero or greater than the number of installed ports).

• Point out of workspace -- This appears if the manipulator tries to
move to a point not within its workspace. This error can occur b
any of the five AML/E motion commands (PMOVE, DPMOVE, ZMOVE, XMOVE,
or GETPART). The point that the manipulator wants to move to
resides in variables 0 - 3 (i.e., 0 contains the X coordinate, 1 the
Y, 2 the Z, and 3 the roll). These can be read by using option "80"
from Comaid. (Manipulator power will first have to be turned on an
the correct application reselected before the R "80" command can be
given).

When an error occurs in an AML/E application, reading the machine status
is likely to give the cause of the error. Even so, sometimes it is har
to determine which AML/E statement caused the error. The next step is
to read the instruction address of the application.

Reading the Current Instruction Address

To read the instruction address, simply select option "08" from the Rea
request menu. The address that is printed by Comaid is the decimal
address of the current instruction or the instruction that caused
error. By generating a listing file with the AML/E compiler, it is
usually possible to determine the statement that caused the error. Th
addresses that are listed on each line correspond to the hardwar
address for the beginning of the line. If the line does not generat
any compiled code, note that the line following the line has the sam
address. The line that causes the error will be the line that has th
address closest to, but not greater than the address of the error. Fo
example, suppose an error occurs at address 113, and one AML/E line ha
address 111 and the next AML/E line has address 114. The AML/E lin
that has address 111 was responsible for the error.

Because of the implementation of motion in the controller, an interna
subroutine is created by the AML/E controller that is responsible fo
all motion. When a point out of workspace error occurs, one cannot rea
the instruction address to determine the line that caused the error
because the line will always be the line of the internal subroutine
When a point out of workspace error occurs, the only recourse is to rea
the value of the point that caused the error (variables 0 - 3). If i
is still not possible to determine which motion statement caused th
error, then try stepping through the application. The internal routin
resides in addresses 1 - 87. If the instruction address is read and i
falls in this range, the controller is within special compiler code.

Chapter 8. Communications 8-251

Reading Specific Program Variables

The last important read request is option "80", which is used to read
specific program variables. The manipulator power must be on and an
application selected for this command to be accepted by the controller.
Using option "80", it is possible to read any variable stored in
controller memory. Since AML/E applications can contain expressions, it
is valuable to be able to read the value of counters that appear in or
are set by expressions.

When you select option "80", Comaid will prompt you for the starting
variable number and the number of variables to be read. The first 34
variables (numbered 0 - 33) are used internally for various purposes.
For example, variables 0 - 3 always contain the last point to which the
program moved the manipulator. If a counter ever gets a wrong value, it
is possible to step through the application, reading the value for the
counter at each step. The erroneous statement can then be found.

Reading Other Values

It may be necessary to read the
reject status indicates why a
application does not communicate
error cannot occur. However
transmission errors are likely.
codes can be found on page H-21.

reject status while debugging. The
transmission error occurred. If an
with the host, then a transmission
if data drive is being used, then
A list of the reject status return

It may also be necessary to read the DI/DO during debugging. To read
the DI/DO, simply select option "10" from the read command menu. The
values of all the digital inputs and outputs will be displayed. You may
discover that the wrong digital port is being used.

Using Control Requests

Some errors cannot be found by using just read requests. Read requests
are most useful when an error occurs that causes power to be lost.
However if the application continues to run, yet not perform the correct
steps, then control requests are more valuable. By using control
requests, you can suspend execution, step through an application, set
debug breakpoints, and change values in controller memory should
variables get incorrect values. To execute a control request, an
application must be selected, otherwise a transmission error will occur.

Suspending Program Execution

Suppose the program is not doing what you thought it would do. You
could execute this command by selecting option "01" from the control
command menu. After suspending program execution, you can read the
machine address to determine where in the application the controller
currently is. This request suspends the controller at its current
instruction, which may not necessarily correspond to the beginning or
ending of an AML/E statement. However if you then select option "04"

8-26 58X7338

execute until next terminator, the controller will then continue to the
end of the next instruction, label, or subroutine call.

Restarting Program Execution

After suspending execution, you can perform read and step requests
through each statement of your program. After determining the cause of
an error, you may wish to continue execution. Selecting option "02"
allows the application to continue from where it left off.

Executing Until the Next Terminator

This performs the same function as X "25" or the step button of the
operator panel. It causes the current application to continue until the
next terminator is encountered. Terminators are placed at the end of
every AML/E statement, at the beginning of a subroutine, and at every
label. By stepping through the application, it is possible to see if
the error is caused by an incorrect flow of control statement (e.g.,
BRANCH, TESTC, COMPC,' TESTI, TESTP, etc.). As you step through the
application, you can read program variables, the current instruction
address, and the DI/DO. This is a lengthy process, but doing this will
almost always detect the error. If the error is found to be an
incorrect value for a counter, pallet, or point, it is possible to
change the value using option "80". Doing this then allows the
application to be continued so you can continue to look for more errors
before returning to the AML/E editor to make the corrections.

Note: It is not possible to step through a GET, PUT, or debug
breakpoint. Doing this will cause Comaid to hang and a TE error
in the controller. If this should happen, manipulator power will
have to be turned off and back on again to clear the error. The
PC will have to be rebooted by striking the Ctrl, Alt, and Del
keys simultaneously.

Setting a Debug Breakpoint

A faster way to step through many statements is to set a debug
breakpoint via control , option "10". When you select this option, Comaid
will prompt you for the address where a debug breakpoint will be
installed. Only one debug breakpoint may be installed at a time, and
installing a new breakpoint cancels any previous one. When the debug
breakpoint is reached, it is cleared. So the next time the same
statement is encountered, the program will not stop execution. The
address you give should be one of the addresses listed in the compiler
listing file (.LST). If this is not the case, then unpredictable
results will occur. There is one exception to this rule; internal
address 72 is the address of any motion statement. If a breakpoint is
set at this address, the controller will reach the breakpoint when the
next motion statement is reached.

If the controller is currently suspended, and you set a breakpoint
address for the current address, the breakpoint will be reached
immediately and no instructions will be executed. Control does not

Chapter 8. Communications 8-27

continue and will stop the next time the same address is reached. To do
this, you should first step until the next terminator, and then set a
debug breakpoint for the desired address.

Once a debug breakpoint has been set, the user should enter the data
drive menu of Comaid and enable data drive. When the controller reaches
the debug breakpoint, the message:

Last data drive operation was: DEBUG

will appear on the screen. After this appears, strike any key to exit
the data drive menu and complete the debug breakpoint transaction. The
user should estimate the amount of time necessary for the debug
breakpoint to be reached for two reasons:

1. Other communications requests can continue to be performed. It is
only when the application gets near the debug breakpoint that data
drive mode must be enabled. In fact, you can even let the
controller run until a transmission error occurs (provided the
program does not contain a GET or PUT instruction). After this
occurs, you can send an X "13" to reset the error and then enter the
data drive mode to complete the debug transaction.

2. If you have an estimate for when the breakpoint should be reached,
you can wait for that time period to elapse. If the breakpoint is
not encountered, then the data drive mode can be exited, and you can
suspend program execution. It is entirely possible that the error
is a flow of control problem, and the breakpoint will never be
reached. After breaking execution, you can step through the
program, reading the instruction address after each step, to
determine the flow of the program.

Note: Remember not to step through a debug breakpoint. This
will cause a TE error in the controller and cause Comaid to hang.
Should this accidently be done, you will have to reboot the PC by
striking the Alt, Ctrl, and Del keys simultaneously. The
manipulator power will have to be turned off and back on again to
clear the TE in the controller.

Resetting the Controller

Suppose you wish to stop the application and restart it from the
beginning. The quickest way to do this from Comaid is to use control
option "20". This deselects the current application and clears any
errors. This is better to use than stop cycle, because this command
stops execution as soon as any current motion is complete. Stop cycle
does not necessarily stop the program from running, because the program
could contain a BRANCH to the first statement as its last statement.
This option cannot be used to stop a program that is hung on a WAITI.
If a program is hung on a WAITI, the only way to clear this condition is
to either set the DI oh or off according to the value specified in the
WAITI, wait for the time limit to expire (a time limit of zero means
"forever" to the controller however), or to turn off manipulator power
with the Stop Button on the operator panel.

8-28 58X7338

Changing Variable Values in Controller Memory

Suppose that by stepping through a program and reading variables values,
you have found a statement that sets the value of a counter incorrectly.
At this point you could exit Comaid, make the change in the original
program, recompile the program, download the program again, and rerun
the program. Doing this may take many minutes however, and you may find
that the statement after the erroneous one also contains an error. When
the first error is discovered, rather than exiting Comaid, it is
possible to change the counter to its correct value and continue
execution. Doing this allows you to find as many errors in the source
program as possible, and fix them all at once. This can be done by
selecting control option "80".

After selecting control option "80", the user is prompted for the
starting variable number and the number of variables to be changed.
This information can be gotten from a cross reference listing produced
by the XREF program (see "XREF Program" on page 2-34 and "XREF Program"
on page 4-89). You can change up to 400 variables in a single request,
as long as they are contiguous in controller memory.

Between the read requests and the control requests, the AML/E programmer
has many debugging tools at his disposal. Debugging AML/E applications
that do not use data drive will consist primarily of read and control
requests. Users should avoid Teach requests, however tempting they are,
because they will cause the manipulator to move to home position before
their action is invoked.

•
Chapter 8. Communications 8-29

AMLECOMM

Introduction to the AMLECOMM System

AMLECOMM is a system consisting of many BASIC modules, which can be
configured to create a BASIC program that is capable of communicating
with the IBM 75xx manipulator family. AMLECOMM supports all the AML/E
Version 4 communications. The user simply sets the proper input
variables, calls AMLECOMM and then examines the return code and output
variables for completion information. All the routines that provide
these functions are called using a BASIC GOSUB statement from the user's
application program. Thus the typical AMLECOMM user might write a BASIC
program to automatically down-load an application, return the
manipulator to home, select the application and start the cycle -- all
by simply calling AMLECOMM with the appropriate inputs.

In addition, full error support is provided via error text files. For
any error return code, there is a corresponding error explanation
message available to provide instant error identification.

AMLECOMM supports interpretive and compiled BASIC, though compiled Basic
is recommended because of the slow speed of the interpreter. AMLECOMM
even has the ability to begin selected operations and return to the
user's program while the operation is being executed by the controller.
Upon successive poll operations the user is notified of the current
status of the outstanding operation request. This allows the user's
program to do other useful work while the manipulator is performing
potentially slow operations, like return home.

The AMLECOMM System Files

The AMLECOMM system is on the third AML/E ship diskette. It consists of
many files:

• COMPILE.BAT -- This is a batch file that shows how to create an
executable (.EXE) version using the BASIC Compiler and DOS Linker.

• CONVERT1.COM and CONVERT2.COM -- These files must be executed before
an interpreter version of AMLECOMM can be run. See "Interpreter vs.
Compiler" on page 8-32 for more on these.

• CCVTFLT.OBJ and CFLTCVT.OBJ -- These files must be linked with the
compiled source code should the user desire a compiled version of
AMLECOMM.

• MSGCOM.TXT -- A message file which contains the error messages for
AMLECOMM, and the error messages for the AML/E version 4
communications.

• CONFIG.BAS -- The configuration program then creates an AMLECOMM
program that meets the user's needs.

8-30 58X7338

http://CONVERT1.COM

• AMLECOMO.BAS -- The only AMLECOMM system module the user shoul
change. This module contains the parameters that AMLECOMM needs
i.e., array bounds, error handling, etc. The user should chang
this file for each application, as some applications have differen
needs. This must be changed BEFORE the configuration utility
run. These are briefly documented in the following section, an
more completely in Appendix G, "Configuration Parameters fo
AMLECOMM."

• AMLECOM1.BAS-AMLECOMK.BAS -- The AMLECOMM system modules. Thes
should not be modified.

• MENUCOMM.BAS -- A program which when compiled with a version o
AMLECOMM configured with all the available options, gives the user
menu-driven communications program. This program is basically th
source code for Comaid, except certain features have been removed i
order to make MENUCOMM smaller and easier to view. This progra
demonstrates how to call the AMLECOMM program.

I nstallation Procedure

Before AMLECOMM can be used, the user must configure a working versio
of AMLECOMM from the AMLECOMM system modules. To do this, the user mus
first determine which of the AML/E Version 4 communication requests th
application needs. After doing this, the utilities diskette is inserte
into the a: drive (if there is no fixed disk installed), and the use
enters

BASICA a:config

The configuration utility will prompt the user with a series of yes/n
questions that determine which communication requests the create
working version of AMLECOMM can handle. When finished, the working cop
of AMLECOMM is loaded in memory, and the user is returned to the BASI
prompt level.

The configuration utility will print the commands necessary to exi
correctly. The user must first enter the commands:

16310
16320
16330

If the compiler is to be used, the file must be saved in ASCII format.
Thus the command

SAVE "filename"

is used, where filename denotes the name of the .BAS file you wish t
have this working copy of AMLECOMM stored in. If the interpreter is t
be used, the source file may now be merged into memory and be run.
Provided the source file has already been created and is stored in ASCII
format, the following command may be used:

Chapter 8. Communications 8-31

MERGE "filename"

The filename used above is the name of the .BAS file that your
application is in. If you have not yet created your application
program, then store the working copy of AMLECOMM in ASCII format, so it
can later be merged. See "Interpreter vs. Compiler" for more on this.

As the questions are answered by the user, only certain modules of the
AMLECOMM system are merged into the working version. The configuration
utility looks for the modules on the default directory; thus the user
must either copy the AMLECOMM system files to the directory containing
BASICA.COM , copy BASICA.COM to the directory containing the AMLECOMM
system files, or use the DOS path feature to begin BASICA (see the DOS
user manual).

Interpreter vs. Compiler

AMLECOMM can be used with either compiler or advanced interpreter basic
(BASICA). It is recommended, however, that compiled basic be used.
This is because the interpreter is vastly slower. The AML/E
communications protocol requires retries of sending D records if a
response is not received within three seconds. BASICA can sometimes
compute and verify the accuracy of a received D record within this time
limit, but usually it cannot. When it cannot acknowledge a D record
within three seconds, the controller sends another copy. AMLECOMM must
then use more processing cycles to accurately ignore the retry. Thus it
often takes as long as six to nine seconds to have AMLECOMM correctly
receive a D record from the controller. AMLECOMM still functions
correctly, just slower. For this reason, IBM Compiler Basic is
recommended.

If Compiler Basic is used, the object modules CCVTFLT.OBJ and
CFLTCVT.OBJ must be linked to the compiled source program. This is
shown in the batch file COMPILE.BAT that is shipped with the AML/E
system.

If BASICA is used, two modules must first be loaded. The modules are
CONVERT1 and CONVERT2. The user simply enters these names as if they
were DOS commands. Each of these will print a status message on the
screen to inform the user they are correctly loaded. If these are not
loaded, AMLECOMM will return an initialization error with an error code
of 2.

AMLECOMM Line Numbers

AMLECOMM uses Basic line numbers 51-19999. Thus an application may not
use these line numbers. The user's application begins executing at the
first line greater than 19999. Thus a user application may contain 50
lines of header comments, but the first executable statement must be no
less than line number 20000.

8-32 58X7338

http://BASICA.COM

Using Compiler Basic

The user application must "include" the AMLECOMM program using the
$Include metacommand of Compiler Basic. This may be done as follows:

1 'First Comment
2 'Second Comment

49 'Forty Ninth Comment
50 REM $INCLUDE: 1 AMLECOMM T

20000 'Start of user's Code

To use the $Include metacommand, the AMLECOMM working copy must be saved
in ASCII format. At the end of the AMLECOMM configuration utility, the
user is informed to save the program with:

SAVE "filename",a

This saves the working copy of AMLECOMM in filename.bas in ASCII format.
The user may use any legal DOS filename to store the working copy of
AMLECOMM. The above example assumes it was stored in AMLECOMM.BAS.

AMLECOMM will automatically insure that the code begins executing at the
first user application statement greater than 19999. Also, AMLECOMM
turns off the listing of the AMLECOMM source, so this will not appear in
the user's listing.

If the user is compiling AMLECOMM then two object files must be linked
together with the compiled source. These files are CCVTFLT.OBJ and
CFLTCVT.OBJ. In addition, a third object file called IBMCOM.OBJ is also
necessary and is supplied with the BASIC compiler. The file COMPILE.BAT
may be used to compile and link a user application.

Using BASICA

In order to use BASICA, the working copy of AMLECOMM must be merged
together with the user's source code for the application. The
instructions at the end of the AMLECOMM configuration utility assume the
user has already written the source code. Since the AMLECOMM
configuration utility terminates in the BASICA monitor with AMLECOMM
already loaded, all that is necessary is to merge the source code with:

MERGE "filename"

where filename.bas is the file that contains the source code for the
user's application. This file must be stored in ASCII format, otherwise
the merge will fail. The file being merged must be stored in ASCII
format. If the source file is not stored in ASCII format (i.e., it was
entered line by line in BASICA, and saved without the ,a), or if the
source file has not yet been created, it is best to exit BASICA, saving
the working copy of AMLECOMM with:

Chapter 8. Communications 8-33

8-34 58X7338

SAVE "filename",a

This will save the working copy of AMLECOMM in filename.bas. At a later
time, the user can then combine this file as follows (assuming filename
above is replace with AMLECOMM):

BASICA
LOAD "application"
MERGE "AMLECOMM"
SAVE "application",a
RUN

BASICA also requires the installing of two COM files called CONVERT1.COM
and CONVERT2.COM . These modules must be installed prior to running the
application that is merged with AMLECOMM. The user simply enters the
commands CONVERT1 and CONVERT2 to DOS and these routines will be
installed. If the system is rebooted, then these routines are lost and
must be reloaded. If the user intends to use BASICA frequently on
AMLECOMM, then the two commands CONVERT1 and CONVERT2 should be placed
in the AUTOEXEC.BAT file (See DOS reference). By doing this, the user
need not worry about installing these COM files. CONVERT1 and CONVERT2
use software interrupts 65 and 67 (Hex). The user application should
not use these interrupts.

Initialization and Configuration Parameters

Before the configuration utility for AMLECOMM is run, there are many
variables that must be initialized that depend on the applications for
which AMLECOMM is to be used. Their meaning and default values are
given here with a more complete discussion to be found in
Appendix G, "Configuration Parameters for AMLECOMM."

• POSTING.A% -- If set to Y.A%, then an X record request will return
to the user application before completing the request. If set to
N.A% then AMLECOMM will wait for the X record request to complete
before returning to the user application. The default is N.A%.
POSTING.A% only affects X records.

• COMM.A -- This variable needs to be set to a number that may be used
as a DOS file number for the communications file. The default is
file number 1.

• OPENFCOMM.A -- This is similar to COMM.A, except this is a file
number used for a file to be downloaded. The default is 3.

• VARMAX.A -- This variable allocates storage for the maximum number
of variables that exist in an application running in the controller.
The default is 400.

• VARMAXRECS.A -- This is used internally, and should be set to
INT(VARMAX.A/4)+1.

• ROBOT.A$ -- This variable defines the type of manipulator that is
connected to the manufacturing system. Set ROBOT.A$ to "7545" or

"7547". The default is "7545". This is only used to determine h
many coordinates will be sent for a "Teach a Point" request. If
7545-800S is attached, leave ROBOT.A$ as "7545".

• ADAPT.A$ -- This variable is set to the communication port th
application will use. The default is "COM1:".

• ARRAYMODE.A% -- This variable indicates whether the arrays used fo
reading variables, poking variables, and data drive are 0 or
based. The default is 0 based so the variable numbers coincide wit
those produced by the cross reference utility.

• RRVARS.A$(VARMAXRECS.A) -- This array is used internally, and mus
be dimensioned with a size equal to VARMAXRECS.A. Unexpecte
results will occur if this is not the case. The declaration fo
RRVARS.A$ should not be removed.

• RVARS.A(VARMAX.A) -- This array is used to return variable value
from a R80 request (read variables). Its size must be set equal t
VARMAX.A. Unexpected results will occur if this is not the case
The declaration for RVARS.A should not be removed, even if no rea
variables request is being used. The configuration utility wil
automatically remove it.

• GVARS.A(VARMAX.A),PVARS.A(VARMAX.A) -- These arrays are used for GE
and PUT operations in data drive. They should be dimensioned wit
size equal to VARMAX.A. Unexpected results will occur if this i
not the case. The declarations for these should not be removed
even if no data drive is being used. The configuration utility wil
automatically remove them.

• C8OVARS.A(VARMAX.A) -- This array is used to poke variables int
controller memory using the C80 communication protocol. The size o
this array must be set to VARMAX.A. Unexpected results will occu
if this is not the case. As with RVARS.A, GVARS.A, and PVARS.A, th
DIM statement for C8OVARS.A should not be removed, even though th
C80 feature may not be needed.

• ON ERROR GOTO 0 AMLECOMM must install its own error handler whe
active to trap communication errors. This will cancel any erro
handler the user has established for his own program. AMLECOMM wil
restore a single error handler for the user. The user changes th
two ON ERROR statements to point to his error handler. If no use
error handler is needed, then ON ERROR GOTO 0 statements are used.

The file AMLECOMO.BAS is shown in its entirety i
Appendix. G, "Configuration Parameters for AMLECOMM." Should this fil
ever become destroyed (e.g., a line deleted), you may get a backup cop
from Volume 3 of the AML/Entry Ship Diskettes.

Chapter 8. Communications 8-3!

Calling AMLECOMM

The AMLECOMM program consists of one BASIC module entry point
(regardless of which communications requests were chosen at
configuration time). All calls to this module must pass the required
information in special input and output BASIC variables. OPERATION.A$
contains the request that AMLECOMM is to perform.
For example, to initialize AMLECOMM one uses:

20000 OPERATION.A$=""
20010 GOSUB 100

Type these lines in as they are shown (even with the two double quotes).
To initialize AMLECOMM, OPERATION.A$ must contain the null string. This
performs the required initializations for AMLECOMM. RTRN.A% contains
the return code of any AMLECOMM request, a 0 means that the operation
(in this case initialization) was performed correctly. A non-zero
return code in RTRN.A% indicates an error occurred. See
"AMLECOMM/COMAID Error Messages" on page B-60 for a list of the AMLECOMM
errors.

After initializing AMLECOMM, the user application should call AMLECOMM
to open the communications port designated by ADAPT.A$.
This is done by:

21000 OPERATION.A$=OPEN.A$
21010 GOSUB 100

OPEN.A$ is an AMLECOMM constant. The value of OPEN.A$ is immaterial to
the user's application; its value is critical only to AMLECOMM. OPEN.A$
is initialized on the first call to AMLECOMM. If the initialization
fails, OPEN.A$ may not be properly initialized. Once again, a non-zero
return code in RTRN.A% indicates that the communication port was not
correctly initialized. Either COM1: or COM2: can be opened, depending
on the value of ADAPT.A$ when AMLECOMM is called. The default is COM1:.
If an application desires COM2:, then perform the assignment:

ADAPT.A$="COM2:"

before the call to AMLECOMM.

After initializing and opening the communications port, the user may
request any AML/E Version 4 communication request. The user simply sets
up the appropriate input variables, calls AMLECOMM via GOSUB 100, and
looks at the appropriate output variables and the return code in
RTRN.A%. All the AMLECOMM variables have a ".A" suffix to distinguish
them from any user application variables. Thus a user application may
use any variable name that does not end in ".A". Examples are the
operation variable, OPERATION.A$, the return code, RTRN.A%, and the read
variables array RVARS.A(n).

The following table contains a list of the input and output variables
for each communication request. The first column indicates the
operation. The values listed in this column are constants that are
placed in the variable OPERATION.A$. The second column indicates the
operand. The values listing in this column are constants that are

8-36 58)(7338

placed in the variable OPERAND.A$. The third column list inpu
variables that are needed for the given operation and operand. The las
column lists the output variable for each operand. For example, to rea
variables 10-15, one would use:

21000 OPERATION.A$=R.A$
21010 OPERAND.A$ =VARS.A$
21020 VAROFFS.A% = 10
21030 VARCNT.A% = 6 '15-10+1=6
21040 GOSUB 100

The output variables would be in RVARS(0)..RVARS(5). Note that th
operation is similar to the first menu of Comaid, and the operand i
similar to the submenus of Comaid. Examples for each request are give
following the table.

•
Chapter 8. Communications 8-37

9EELX9S 9E-9

1

-

-
-
-
-

-
-

-

-
•aNOZ

u.avouva
WIMUNFI

%V"IVAIHOd
%wwnmixoa

iru'v-VIT*Vv.x

(AIII0 S009-51751)
STIHOIN =

(API() S009-5,50
STLITI =
twalloz =

STOVICAVd =
SVINHNIU =

tv.moa =
STINIOd =

(Hovel)
SV'I =

-
S•RINN
tiviliva -

(puoTumoa)
tv.N =

- t•Ilivd -
(Pnalun)
tv•n =

(47) •atusod
WINONVA

` WXYPRIVA)TSHVAN
Ora' 'Oria

ti•muu
(z0v . auplua
(£)V'rIff.LONOIN

STNIIIII
OUNHIN

-
WSLIONVA
' WINONVA

-
-
-
-
-
-

Oi•sod =

STSNVA =
tv•oma =
tiruaav =
STWINd =

SV'OHOIN =
STIVISH =
STIVISN =

(P8921)
ST' U =

-
%rsnIvIs

%Tian =
%V'NO =

WONIISOd

tv . saadv .
STIfIddV =
STE'IddV =
tv - zaddv =
Orvidav .
Oral's =

STNaNdOIS =
S•A0dOIS =

STAOINVIS =
troInv .

trunsu =
ti•wamx =
WHWOH =

(94noexa)
S•X =

STDIVIIMA
Llano

ONIONOdSH2RIO0

STD:MINYA
IOdNI
HUHIO

tiramvHado STNOLINHad0

NO113M1A A9 S319VI2IVA indinoandm V01033111V

OPERATION.A$ OPERAND.A$

OTHER
INPUT

VARIABLES

CORRESPONDING
OUTPUT

VARIABLES

= C.A$
(Control)

= SUSPEND.A$
= RESTART.A$
= TERM.A$
= DEBUG.A$
= RESET.A$
= POKE.A$

-
-
-

ADDRESS.A%
-

CVARCNT.A%
CVAROFFS.A%

C8OVARS.A(VARMAX.A)

-
-
-
-
-
-

= D.A$
(Data Drive)

- DDSWITCH.A%
= OFF.A%
= ON.A%

RTRN.A$=GETC.A$
GETCVAR.A

RTRN.A$=GET.A$
GVARS.A(VARMAX.A)

RTRN.A$=PUT.A$

RTRN.A$=DEBUG.A$

-

STATUS.A%
RTRN.A$= NODD.A$

= GETC.A$
= GET.A$
= PUT.A$
= DEBUG.A$

DDOFFS.A%(for
GETC.A$
GET.A$
PUT.A$)

DDCNT.A% (for
GET.A$
PUT.A$)

STATUS.A%

STATUS.A%

STATUS.A%
PVARS.A(VARMAX.A)
STATUS.A%

Chapter 8. Communications 8-39

Note: All module calls return the following variables:

RTRN.A% - Integer Error return code
STATUS.A% - Integer status variable indicating the

state of AMLECOMM:
- IDLE.A% - Able to accept new

operation requests.
- PENDING.A% - Operation pending, poll for completion.
- READY.A% - Data drive operation ready

for data from user's application.
STATUS.A% can only enter the PENDING.A% or READY.A%
state if an X record with posting or data drive mode is
selected. Thus STATUS.A% can be considered an output
variable of an X record transaction and of a data drive
transaction, and so is shown as such in the preceding
table.

AMLECOMM calls are performed using a BASIC GOSUB 100 statement.
AMLECOMM has to be merged into the user's application program as already
described. The following describes the steps used to set up the input
variables and pass control to the AMLECOMM interface module. The
symbols "2nnna", "2nnnb", "2nnnc" and so forth refer to BASIC line
numbers for code segments in the user's application program. Remember
the statements in a user application must have line numbers greater than
19999, thus these symbolize line numbers with this constraint. Line
numbers may of course be in the 30000's, 40000's, 50000's, or 60000's,
so this notation does not imply line numbers must be in the 20000's.

Initialize AMLECOMM for Use

2nnna OPERATION.A$="" 'Call AMLECOMM initialization
2nnnb GOSUB 100

This GOSUB command initializes and configures AMLECOMM to its initial
state. This call is the very first call to AMLECOMM and it is only done
once.

Opening the ADAPT.A$ Communications Port

2nnna OPERATION.A$=OPEN.A$
2nnnb ADAPT.AWCOM1:"
2nnnc GOSUB 100

'Open the COM port
'Specify COM1:
'Call AMLECOMM

This GOSUB command can only be done after a successful initialization.
It will open the communications port specified by ADAPT.A$. If the
controller is off-line or the cable not connected, an error will occur.
Thus the user application should test for a non-zero return code, and
retry this call should an error occur.

8-40 58X7338

•

•

Execute Operation

2nnna OPERATION.A$ = X.A$ 'Specify "Execute" operation
2nnnb OPERAND.A$ = HOME.A$ 'Specify "Move Home"
2nnnc GOSUB 100 'Call AMLECOMM

This command causes the attached manipulator to execute a "Move Home".
Control will not return to the caller until the move is complete.

2nnna OPERATION.A$ = X.A$ 'Specify "Execute" operation
2nnnb OPERAND.A$ = HOME.A$ 'Specify "Move Home"
2nnnc POSTING.A% = ON.A% 'Specify asynchronous-

'completion posting
2nnnd GOSUB 100 'Call AMLECOMM

This example causes the attached manipulator to execute a "Move Home".
Control will return to the caller once the move has started. The progr
can then do other things while the move is completing.
The AMLECOMM program enters the PENDING.A% state (as indicated by th
variable STATUS.A%), and will reject any new AMLECOMM requests until th
preceding X record request has completed. There are two ways t •
complete the preceding X record transaction. The first is to have th
user application continue, and only when it is necessary to cal
AMLECOMM with a new request, the application waits for the preceding
request to terminate. The following lines of code achieve this:

2nnne WHILE STATUS.A% = PENDING.A%
2nnnf GOSUB 100 'Call AMLECOMM
2nnng WEND
2nnnh POSTING.A% = OFF.A% 'Specify no posting

OPERATION.A$ must still be set to X.A$, and OPERAND.A$ must still be se
to the last X record request (in this case HOME.A$).
The application will wait until AMLECOMM has entered the IDLE.A% state
The user should test RTRN.A% upon exiting from the loop to make sur
that the protocol completed normally. The second way to end th
protocol is to use the Basic ON COM statement. The AMLECOMM state c
only change from PENDING.A% to IDLE.A% when the controller has sent a
Xon following a previous Xoff. By using the ON COM statement, the use
application can be interrupted when there is an Xoff or Xon from th
controller on the line.

Chapter 8. Communications 8-4k.

The following lines of code perform this:

2nnne ON COM(COMM.A) GOSUB 2nnnf : GOTO 2nnnk
2nnnf GOSUB 100 'Call AMLECOMM to check for change
2nnng IF STATUS.A%=PENDING.A% THEN 2nnnj
2nnnh COM(COMM.A) OFF 'Shut off future trapping
2nnnf POSTING.A% = OFF.A% 'Turn off posting
2nnnj RETURN
2nnnk .
2nnnf .
2nnnm .

OPERATION.A$ must still be set to X.A$, and OPERAND.A$ must still be set
to the last X record request (in this case HOME.A$) whenever AMLECOMM is
called.
Note that POSTING.A% should not be changed until the previous request
has been completed, hence we include it with the interrupt handler.
Using this approach, the user need not worry about imbedding wait loops
throughout his application code. The application may continue at its
own pace, and the next AMLECOMM request need not be preceded by a wait
loop. If the protocol has not been completed, a return code of
RTRN.A%=8 will be returned when a new function is requested (see
"AMLECOMM/COMAID Error Messages" on page B-60).

The other X record requests are called identically to HOME.A$. Their
meanings are:

OPERAND.A$ ACTION
HOME.A$ Causes manipulator to return home.
RMEM.A$ Recalls memory.
RSTERR.A$ Reset error.
AUTO.A$ Enter auto mode instead of manual mode.
STARTCY.A$ Start cycle.
STOPCY.A$ Stop cycle.
STOPMEM.A$ Stop and set memory.
STEP.A$ Perform a single step of the

selected application.
APPL1.A$ Select application 1.
APPL2.A$ Select application 2.
APPL3.A$ Select application 3.
APPL4.A$ Select application 4.
APPL5.A$ Select application 5.

8-42 58X7338

A Simple Read Operation

2nnna OPERATION.A$ = R.A$ 'Specify "Read" operation
2nnnb OPERAND.A$ = RSTAT.A$ 'Specify read reject (Eot) status
2nnnc GOSUB 100 'Call AMLECOMM

This example causes the controller to return the reason code for a
previous Eot response via communications. The reason code (two numeric
characters) is returned in the RTRN.A$ variable. The English
explanation of the error can be found in MSGCOM.TXT (See "MSGCOM.TXT" on
page B-66). Reading the machine status or the current instruction
address is similar, except OPERAND.A$ is set to MSTAT.A$ or ADDR.A$, and
the return value in RTRN.A$ is four characters long instead of two. The
return value of MSTAT.A$ is discussed in the AML/E System Documentation.
For ADDR.A$, the four characters represent the decimal address. For
example, if the current instruction address were 72, then RTRN.A$ would
be equal to the string "0072".

The Other Read Operations

2nnna OPERATION.A$ = R.A$ 'Specify "Read" operation
2nnnb OPERAND.A$ = MICRO.A$ 'Specify read microcode level and
2nnnc GOSUB 100 'machine type and call AMLECOMM

This example will read the microcode level and manipulator type into the
array MICROTBL.A. MICROTBL.A(1) will contain the major microcode level,
MICROTBL.A(2) will contain the minor microcode level, and MICROTBL.A(3)
will contain the manipulator type.

Reading the manipulator parameter table or the current manipulator
position is similar to this except the return values are in the arrays
PARMTBL.A and POSTBL.A. The 12 values returned in PARMTBL.A are:

Index Number Description
1 First Link Length (in mm)
2 Second Link Length (in mm)
3 Theta 1 Maximum Pulse
4 Theta 2 Maximum Pulse
5 Roll Motor +/- Maximum Pulse
6 Theta 1 Offset(in radians)
7 Theta 2 Offset (in radians)
8 Theta 1 Pulse Rate
9 Theta 2 Pulse Rate
10 Roll Motor Pulse Rate
11 Z-Axis Pulse Rate
12 Z-Axis Maximum Stroke

The 4 values returned in POSTBL.A correspond to the current position in
pulses of the Theta 1, Theta 2, Z, and Roll axes.

Reading variable values from an application running on the controller is
slightly more complex. The user application must set up VARCNT.A% to
have the number of consecutive variables to be read, and VAROFFS.A% must
contain the starting variable number. Note that VAROFFS.A% depends on

Chapter 8. Communications 8-43

the value of ARRAYMODE.A% set up by the user in the file AMLECOMO.BAS
(see Appendix G, "Configuration Parameters for AMLECOMM"), but using the
default of 0 allows VAROFFS.A% to be set to the exact number produced by
the AML/E XREF utility. For example, to read variables numbered 34-43
on the cross reference listing, one would use

2nnna OPERATION.A$ = R.A$ 'Specify "Read" operation
2nnnb OPERAND.A$ = VARS.A$ 'Specify read variables
2nnnc VAROFFS.A% = 34 'Specify returning variables-

'starting with the 34th variable.
2nnnd VARCNT.A% = 10 'Specify a count of ten variables-

'to return.
2nnne GOSUB 100 'Call AMLECOMM

If the return code is 0 (RTRN.A%=0), then the read operation completed
normally, and the 10 values read are in the array RVARS.A. The values
read will be placed in RVARS.A(0) through RVARS.A(9). If fewer
variables existed in the current application than the number requested,
then the actual number of variables read will be returned in VARCNT.A%.
If in the above example the last variable according to the cross
reference listing was numbered 40, then on return VARCNT.A% would equal
7 (40-34+1). To read all the variables in controller memory, the
application sets VARCNT.A%=0 and VAROFFS.A%=0. As above, the actual
number of variables read will be placed in VARCNT.A% and the actual
values will be placed in RVARS.A(0) through RVARS.A(VARCNT.A%-1).

Unload Operation

2nnna OPERATION.A$ = U.A$
2nnnb PART.A$ = "1"
2nnnc GOSUB 100

'Specify "Unload" operation
'Specify the partition to unload
'Call AMLECOMM

This example causes the controller to unload the specified partition in
preparation for a subsequent download to that partition.

8-44 58X7338

Download Operation

2nnna OPERATION.A$ = N.A$ 'Specify "Download" operation
2nnnb PART.A$ = "1" 'Specify the partition to load
2nnne NAME.A$ = "AMLEPROG" 'Specify the program to download
2nnnd GOSUB 100 'Call AMLECOMM

This example causes the specified program to be downloaded to the
specified partition. AMLECOMM simply passes NAME.A$ to the Basic OPEN
command, so the drive number, path, and filename must be compatible with
your level of DOS. The only exception to this is that AMLECOMM will
append a file extension of ".ASC" if none is given. Thus one can
download a file that does not have a ".ASC" extension, and it is the
user's responsibility to make sure an actual ASCII file produced by the
AML/E Compiler is downloaded. If this is not the case, then a
transmission error (TE) will occur.

Teaching a Point Operation

2nnna OPERATION.A$ = T.A$ 'Specify "Teach" operation
2nnnb OPERAND.A$ = POINT.A$ 'Specify Teach a point
2nnne X.A! = 400 'Specify the "X" coordinate
2nnnd Y.A! = 300 'Specify the "Y" coordinate
2nnne Z.A! = -100 'Specify the "Z" coordinate
2nnnf R.A! = 0 'Specify the "R" coordinate
2nnng GOSUB 100 'Call AMLECOMM

This example causes a Teach operation to be performed to the specified
coordinates. The manipulator will immediately move to the specified
point . T records can only be issued at certain times. T
records cannot be issued when an application is running, stopped by CO1
(suspend), C04 (execute to next terminator), or in step mode. The
application must first be stopped by C20 (reset) or X23 (stop cycle).

Warning: Due to the implementation of Teach Records in the controller,
if the manipulator has been taken off-line, moved, and put back on
line, then a T Record wilt cause the manipulator to move home before
invoking its action.

Turning on a DO Port

2nnna OPERATION.A$ = T.A$ 'Specify "Teach" operation
2nnnb OPERAND.A$ = PORT.A$ 'Specify Teach a port
2nnne PORTNUM.A% = 5 'Specify DO port number 5
2nnnd PORTVAL.A% = 1 'Specify Turn ON (0 means OFF)
2nnne GOSUB 100 'Call AMLECOMM

This example causes a Teach operation to be performed that will turn on
Digital Output port number 5.

Chapter 8. Communications 8-45

Changing

2nnna
2nnnb
2nnnc
2nnnd

LINEAR, PAYLOAD, or

OPERATION:AS = T.A$
OPERAND.A$ = ZONE.A$
ZONE.A% = 10
GOSUB 100

ZONE

'Specify "Teach" operation
'Specify Teach a port
'Specify a Zone of 10
'Call AMLECOMM

This example causes a Teach operation to be performed that will set zone
to 10.
LINEAR and PAYLOAD are changed in a similar manner. Using a value of 0
for LINEAR, PAYLOAD, or ZONE will set the value back to its default
switch setting.

Changing Arm Configuration (7545 -800S Only)

2nnna OPERATION.A$ = T.A$ 'Specify "Teach" operation
2nnnb OPERAND.A$ = LEFT.A$ 'Specify Left Mode
2nnnc GOSUB 100 'Call AMLECOMM

This example causes a Teach operation to be performed that will change
the arm configuration of the 7545-800S to left mode. Changing the mode
to right is done similarly. The protocol for switching the arm
configuration of the 7545-800S uses a P record instead of a T record,
but AMLECOMM hides this from the user.

A Simple Control Operation

2nnna OPERATION.A$ = C.A$ 'Specify "Control" operation
2nnnb OPERAND.A$ = SUSPEND.A$ 'Suspend current application
2nnnc GOSUB 100 'Call AMLECOMM

This example will suspend the current application as soon as possible
(i.e., as soon as any motion completes). The application can then be
restarted using the RESTART.A$ operand. The RESTART.A$, TERM.A$
(execute until next terminator), and RESET.A$ are performed like the
SUSPEND.A$ operand.

Setting a Debug Breakpoint

2nnna OPERATION.A$ = C.A$
2nnnb OPERAND.A$ = DEBUG.A$
2nnnc ADDRESS.A% = 72
2nnnd GOSUB 100

'Specify "Control" operation
'Suspend current application
'Break after next motion
'Call AMLECOMM

This example will cause a breakpoint to be set at address 72 (decimal).
The controller will stop execution and send a controller initiated
communications request to the host when this address is encountered.
Address 72 is a special address to the AML/E compiler which is at the
end of its internal motion subroutine. Thus as soon as the next move is
complete, execution will stop. All other addresses should be attained

8-46 58X7338

from the .LST file created by the AML/E compiler. Execution will halt
before the statement at the given address is executed.

Because the controller initiates a communications request when the
breakpoint is reached, the application must enter data drive mode to
await the arrival of the controller's message. See the forthcoming
discussion of data drive.

Changing Variables in Controller Memory

2nnna OPERATION.A$ = C.A$
2nnnb OPERAND.A$ = POKE.A$
2nnnc CVAROFFS.A%= 34
2nnnd CVARCNT.A% = 4
2nnne C8OVARS.A(0)=650
2nnnf C8OVARS.A(1)=0
2nnng C8OVARS.A(2)=0
2nnnh C8OVARS.A(3)=0
2nnni GOSUB 100

'Specify "Control" operation
'Poke variables into memory
'Starting from variable 34
' to variable 37 (34+4-1)
'Send 650 to variable 34
'Send 0 to variable 35
'Send 0 to variable 36
'Send 0 to variable 37
'Call AMLECOMM

This example will send value 650 to variable 34, and 0's to variables
35-37. In order to determine which AML/E program variables to change, a
symbol table must be created during compilation of the program. The
XREF program can then be run on the .SYM file created to give a listing
of the variables' numbers. See "XREF Program" on page 2-34 and "XREF
Program" on page 4-89.

Data Drive Operation

2nnna OPERATION.A$ = D.A$
2nnnb DDSWITCH.A% = ON.A%
2nnnc GOSUB 100

'Specify "Data Drive" operation
'Specify turn on data drive mode
'Call AMLECOMM

This example causes the controller to become the communications
initiator by placing the controller in the'Xon state. The host must now
be ready to respond to requests from the controller to avoid
communication timeouts. The return code in RTRN.A% will either be a 0
(all was well and data drive mode has been entered), or 19 (the
controller has sent an Eot, and data drive mode has not been entered).
The latter will occur when data drive mode was entered too late, and the
controller is already in the Xto state. This occurs when the running
controller application hits a GET, PUT or DEBUG breakpoint, and the
controller is in the Xoff state. The controller enters the Wxo state
(Waiting for Xon), and unless an Xon is received within 30 seconds, the
Xto mode is entered. The user host application then tries to use the
above AMLECOMM call to enter data drive mode, but it is too late. When
the return code of 19 is received, a single X record (RSTERR.A$) will
place the controller application back in the Wxo state, and then the
above AMLECOM call can be used to enter data drive.

When using data drive, the user application sees one of two possible
AMLECOMM states (as indicated by STATUS.A%). When the Xon is sent to

Chapter 8 Communications 8-47

the controller, AMLECOMM enters the PENDING.A% state. AMLECOMM will
stay in the PENDING.A% state until one of two events occurs:

1. The user application shuts off data drive by setting DDSWITCH.A% to
OFF.A% and calling AMLECOMM. This would return the user to the
IDLE.A% state, and reinstate the host has the initiator of
communications.

2. A record request is received from the controller signifying the
start of a controller initiated data drive request. When this
occurs AMLECOMM enters the READY.A% state. Depending on the D
record received from the controller, the host has a different amount
of time to respond before a TE (Transmission Error) results. For a
GET request the host has 30 seconds from when the D record is sent,
for a PUT request or DEBUG encountered notification the host has
three seconds.

The user application should poll AMLECOMM every 1 second to see if the
STATUS.A% has changed from PENDING.A% to READY.A%. When the user
application notices that AMLECOMM is in the READY.A%, state, the data
drive request initiated by the controller is given in RTRN.A$ (which is
set to GET.A$, GETC.A$, PUT.A$, or DEBUG.A$). The user application then
calls AMLECOMM one more time (without changing the value in RTRN.A$) and
the data drive operation is completed, and AMLECOMM returns to the
PENDING.A% state.

Note: AMLECOMM supports the GETC instruction of AML/Entry
Version 3. This instruction is no longer available in AML/Entry
Version 4, having been replaced by the GET instruction.

The following example illustrates how to complete each data drive
transaction. The example simply waits for AMLECOMM to enter the
READY.A% state or encounter an error. Using ON COM as described with X
records could also be used to recognize when the controller has sent the
D record that initiates a data drive transaction and places AMLECOMM in
the READY.A% state.

8-48 58X7338

2nnna OPERATION.A$ = D.A$ 'Specify data drive operation
2nnnb DDSWITCH.A% = ON.A% 'Keep data drive on
2nnnc GOSUB 100 'Call AMLECOMM to turn on Data Drive
2nnnd WHILE STATUS.A%=PENDING.A% AND RTRN.A%=0
2nnne GOSUB 100 'Call AMLECOMM for DD request
2nnnf WEND
2nnng IF RTRN.A%<>0 THEN PRINT "ERROR in Data Drive": GOTO 2nnnd
2nnnh IF RTRN.A$=GETC.A$ THEN GETCVAR.A=10*DD0FFS.A% : GOSUB 100
2nnni IF RTRN.A$=DEBUG.A$ THEN GOSUB 100
2nnnj IF RTRN.A$<>PUT.A$ THEN 2nnnq 'Handle PUT request
2nnnk FIRST%=DDOFFS.A%:NUM%=DDCNT.A% 'Save offset and count
2nnnl GOSUB 100 'Receive vars from robot
2nnnm WHILE NUM%<>0 'Print each value received
2nnnn PRINT "VAR# ";FIRST%;" = ";PVARS.A(FIRST%)
2nnno FIRST%=FIRST%+1 : NUM%=NUM%-1
2nnnp WEND
2nnnq IF RTRN.A$<>GET.A$ THEN 2nnnd 'Handle GET request
2nnnr FOR I=0 TO DDCNT.A%-1 'Load vars to send
2nnns GVARS.A(DDOFFS.A%+I)=I 'Send 0,1,2,3....
2nnnt NEXT I
2nnnu GOSUB 100 'Call AMLECOMM to send value
2nnnv GOTO 2nnnd 'Handle next request

If an error occurs while polling for the READY.A% state, then RTRN.A%
will be set to a non-zero return code, but AMLECOMM will remain in the
PENDING.A% state. Thus an application must loop until a non-zero return
code is received or the READY.A% state is entered. When the READY.A%
state is entered, the above example tests RTRN.A$ to see which request
the controller has initiated.

For a GETC request, the user application can inspect DDOFFS.A% to see
which variable the application requests. The user application then
places the value to be sent for this variable in GETCVAR.A, and calls
AMLECOMM. In the above example, the value sent is 10 times the variable
number. For example AMLECOMM would data drive a 70 for a GETC for
variable 7.

For a DEBUG encountered notification, nothing needs to be done except to
call AMLECOMM once again to complete the protocol.

For a PUT the values to be sent are specified by the starting variable
number in DDOFFS.A% and the number to be sent in DDCNT.A%. The user
application should save the values of these variables before calling
AMLECOMM again for a reason to be discussed momentarily. The user then
calls AMLECOMM again and the values sent by the controller will be
placed into PVARS.A in the corresponding locations. For example, if
variables 34-43 are sent via a PUT, the values would be placed in
PVARS.A(34) through PVARS.A(43). This is called "memory map". Note
this is different from the technique use by RVARS.A for the read
variables request.

For a GET the user must load the values to be sent into the array
GVARS.A using a memory map. Thus if the controller requests 10
variables starting from variable number 50, the user application would
have to load the appropriate values into GVARS.A(50) through

Chapter 8. Communications 8-49

GVARS.A(59). After the values are loaded, the user application calls
AMLECOMM and the values are sent to the controller.

When calling AMLECOMM in the READY.A% state, the user application must
not change RTRN.A$, because this tells AMLECOMM which data drive
protocol to use. This is why RTRN.A$ is shown as an output variable in
the first half of the data drive protocol and as an input variable in
the second half of the data drive protocol in the table earlier in this
section. When AMLECOMM is called in the READY.A% state, the protocol is
completed and AMLECOMM will either return to the PENDING.A% state or
remain in the READY.A% state (if another data drive request has been
made immediately by the executing controller application). This is why,
in the example code shown for a PUT transaction, the values for DDCNT.A%
and DDOFFS.A% must be saved in NUM% and FIRST% -- if after completing
the PUT protocol, the next request is immediately received, then the new
values may overwrite the old ones in DDCNT.A% and DDOFFS.A%. Note that
the example may actually perform both a PUT and a GET before the loop at
2nnnd is re-entered.

Note: If a PUT command is requested which accesses variables beyond
VARMAX.A, then the variables beyond VARMAX.A are not saved in PVARS.A.
It is the responsibility of the application to inspect DDOFFS.A% and
DDCNT.A% to ensure they are within VARMAX.A. Likewise, if a GET command
is requested which accesses variables beyond VARMAX.A, then only the
variables up through VARMAX.A are sent a value. The remainder of the
variables are not sent values. This will cause a transmission error
(TE) that may be reset by using the X 13 request.

To end the data drive mode of communications and reinstate the host as
the communications initiator, the following should be performed:

2nnna OPERATION.A$ = D.A$
2nnnb DDSWITCH.A% = OFF.A%
2nnnc GOSUB 100

'Specify "Data Drive" operation
'Specify turn off data drive mode
'Call AMLECOMM

AMLECOMM requires level 15 or 16 microcode in order to shut off data
drive properly. With this microcode, the above code will either return
a return code of 0 (all went well, data drive mode has exited), or 19
(the controller has sent an Eot). A return code of 19 means that the
controller had already sent a D record, and the user application did not
call AMLECOMM quickly enough to complete the protocol (30 seconds for a
GET, nine seconds for a PUT or DEBUG (three seconds per try, two
retries)). When this happens, the above code will place AMLECOMM back
into the IDLE.A% state, and X records can now be used to clear the
error. Two consecutive X record requests (RSTERR.A$ followed by
STARTCY.A$) will clear the error and restart the controller application.
The controller application will then immediately enter the Wxo state
(waiting for Xon), and the data drive transaction that failed will be
retried as soon as an Xon is sent.

With pre-15.1 level microcode, the user application must only exit data
drive when the controller application will not perform a simultaneous
data drive request. Thus the controller application should include
several "windows" consisting of three to four consecutive DELAY
statements, and the cell application running on the host must exit data

8-50 58X7338

APPENDIX A. COMMAND/KEYWORD REFERENCE

This appendix provides an alphabetic listing of Edit commands, AML/Entry
commands and AML/Entry keywords. Each command and keyword is described
briefly with its format and purpose. AML/Entry command descriptions
include a category called "Manipulators." The type of command is also
stated. Examples are included where applicable.

Note: In this appendix, the AML/Entry program examples are,
except where marked, written for use on a manipulator with a Home
position of (650,0,0,0). If the Home position on the manipulator
is different, you may need to change the points in the examples to
produce valid results.

AML/Entry commands are instructions to the system that usually resemble
words in the English language. Commands are included in an AML/Entry
statement and often contain parameters enclosed in parentheses, and are
always ended with a semicolon.

AML/Entry keywords are used to define constants, reserve storage for
variables, invoke arithmetic functions, and identify the beginning and
ending of a subroutine.

Editor commands aid in the creation, modification, and management of
AML/Entry programs on the Personal Computer. Editor commends are
classified as Line Edit commands and Primary Edit commands. Eine Edit
commands are entered to the left of the line numbers on the screen.
Primary Edit commands are entered following the COMMAND INPUT --->
prompt of the editor.

Refer to Chapter 3, "Editor" in this manual for detailed descriptions of
the editor commands. Chapter 4, "A Manufacturing Language/Entry",
contains detailed descriptions of all AML/Entry commands, keywords, and
rules for AML/Entry statements.

Appendix A. Command/Keyword Reference A-1

Line Edit Command

Format: A

Purpose: This line command designates where the copied or moved
line(s) are put when a copy or move command executes. The
text is placed after the line where the A is placed. The
command is used in conjunction with the line commands C ,
CC , M , or MM .

AML/Entry Arithmetic Function

ABS

ABS(expression)

This command is applicable to all systems using
AML/Entry Version 4.

This arithmetic function returns the absolute value of
an expression. The absolute value of a number is
defined as the positive value of the number. For
numbers which are already positive, the ABS function
returns the number itself. For numbers which are
negative, the ABS function returns -1 multiplied by the
number,

This function is useful for determining how close one
expression is to another. For example, to compare two
counters which contain real values, the ABS of the
difference of the counters should be compared to a
small, positive number (i.e. 0.0001). See "Expressions"
on page 4-48 for a discussion of expressions.

Format:

Manipulators:

Purpose:

Remarks:

Examples:

ABS(0) = 0
ABS(3.2) = 3.2
ABS(3150) = 3150
ABS(-1) = 1
ABS(-2.999) = 2.999
COMPC(ABS(A-B) < .0001,EQUAL); --Checks to see if the

--counters A and B are
--within .0001 of each
--other. If so, branch
--to the label EQUAL.

Appendix A. Command/Keyword Reference A-3

ATAN

AML/Entry Arithmetic Function

Format: ATAN(expression)

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This arithmetic function returns the arctangent of an
expression. The arctangent of a number is defined as
the angle (in degrees) whose tangent is the number
given. The result will always be in the range of -90
through 90.

The tangent of an angle is equal to the sine of the
angle divided by the cosine. The arctangent "undoes"
the tangent function. The ATAN2 function performs a
similar function, except a value in the range of -180
through 180 is returned. See "Expressions" on page 4-48
for a discussion of expressions.

Examples:

ATAN(0) = 0
ATAN(1) = 45
ATAN(-SQRT(3)/3) = -30

--Thus TAN(0)=0
--Thus TAN(45)=1
--Thus TAN(-30)=-SQRT(3)/3

ATAN2

AML/Entry Arithmetic Function

Format:

Manipulators:

Purpose:

Remarks:

ATAN2(expressionl,expression2)

This command is applicable to all systems using
AML/Entry Version 4.

This arithmetic function returns the arctangent of
expressionl divided by expression2. The arctangent of a
number is defined as the angle (in degrees) whose
tangent is the number given. Thus the tangent of the
result of the ATAN2 function will give
expressionl/expression2. The result will always be in
the range of -180 through 180.

The tangent of an angle is equal to the sine of the
angle divided by the cosine. The arctangent "undoes"
the tangent function. The ATAN2 function essentially
uses expressionl as the sine value, and expression2 as
the cosine value. In general, however, any Y coordinate
can be used as expressionl and any X coordinate as
expression2. The result of the ATAN2 function will then
be the angle made by the line segment (0,0)-(X,Y) and
the X-axis. The angle will have the same sign as
expressionl. If both expressionl and expression2 are 0,
then a run-time AML/Entry error occurs. If COMAID is
used to perform a R 01 (read machine status), the error
code will be Hex 34 (Invalid arguments for ATAN2
function). See "Expressions" on page 4-48 for a
discussion of expressions.

Examples:

ATAN2(1,-1) = 135 --Thus TAN(135)=1/-1
ATAN2(3,3) = 45 --Thus TAN(45)=3/3
ATAN2(-.5,-SQRT(3)/2) = -150 --Thus TAN(-150)=-.5/(-SQRT(3)/2)
ATAN2(-7,0) = -90
ATAN2(0,0) = AML/Entry Error

Appendix A. Command/Keyword Reference A-5

Graphic Representation of the AT 42 lFuntt ion

58X7338

Line Edit Command

Format: B

Purpose: This line command designates where the copied or moved
line(s) are put when a copy or move command executes. The
text is placed before the line where the B is placed. The
command is used in conjunction with the line commands C ,
CC , M , or MM.

•
Appendix A. Command/Keyword Reference A-7

BRANCH

AML/Entry Command

Format: BRANCH(label);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

Example:

This instruction unconditionally transfers control to
the program line containing the specified label.

The label must appear in the same subroutine as the
BRANCH statement.

As shown in the example, the branch statement returns
control to the statement that checks for a part in the
feeder. The statement with the GO label is not executed
until the test at DI point 8 indicates that a part is
present. The program then transfers control to the
statement with the label GO, avoiding the branch
statement.

FEEDER:PMOVE (PT (-400,400,-80,180));
CHECK:TESTI(8,1,G0); --TEST FOR PART PRESENT

WRITE0(3,1); --OPEN FEEDER GATE
DELAY(2);
WRITE0(3,0); --CLOSE FEEDER GATE
BRANCH(CHECK); --RETURN TO CHECK

GO:ZMOVE(-250);

• BREAKPOINT

AML/Entry Command

Format: BREAKPOINT;

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This instruction allows the operator at the control
panel to interrupt the application program at a specific
point and then resume the application from that point at
a later time. If the Stop and Mem key has been
pressed, the controller stops executing the program at
the next BREAKPOINT instruction or at the last END
keyword for the application program.

The operator uses the Stop and Mem key and the Recall
Memory key with this feature. You can use this
instruction in an application program where you may want
to stop the application without completing the cycle.
Multiple BREAKPOINT commands can be provided in the
program.

When you use the Recall Memory key to resume an
application after Manip Power has been turned off,
remember that the manipulator starts at the home
position, with the Z-axis shaft up and the optional
gripper open. If the statements previous to a
BREAKPOINT involved DOWN commands or closing the
optional gripper, the controller does not remember those
commands occurred.

When using BREAKPOINT commands, the important things to
remember are:

• DOWN or GRASP commands are not retained during the
power down and future power up.

• DO states are not retained during BREAKPOINT if
Manip Power is turned off. All DO's become
inactive.

• If you execute the BREAKPOINT command without
removing Manip Power you can restart execution at
the place it was broken off. However, if Manip
Power is turned off the manipulator must be returned
to the Home position before execution can resume.

Appendix A. Command/Keyword Reference A-9

Example: Assume that an application puts 10 identical parts into
a carton. A simple way to program this application is
to write a subroutine M that executes repeatedly. If it
is occasionally necessary to stop the application before
the carton is loaded, you may want to resume the
application and load the remaining parts. Inserting a
BREAKPOINT command in M allows you to do this.

COMMAND INPUT -->

1 DEMO:SUBR;
2 M:SUBR;
3 PMOVE (PT (300,400,-100,0));
4 -
5 -
6 -
7 BREAKPOINT;
8 END;
9 M;
10 END;

A-10 58X7338

Line Edit Command

Format:

Purpose: This line command copies a single line to a location
following the line where the line command A appears or
before the line where the line command B appears. The
line numbers are put in numeric order when the command is
executed.

Remarks: Type the A on the line you want the copied line to follow
and press the enter key. Or, type B on the line you want
the copied line to come before and press the enter key.

C

Appendix A. Command/Keyword Reference A-11

CANCEL

Primary Edit Command

Format: CANCEL

Purpose: This primary command allows you to exit the editor without
saving the current program on the diskette.

Remarks: You may want to use this command in the following cases:

• You want to exit the editor without saving any
information from the editing session on diskette.

• You entered the editor without specifying a file to
edit.

• You deleted the file you are editing from the diskette,
and you want to prevent the copy in the editor from
being saved.

• You renamed the file that you are editing and want to
prevent the copy in the editor from being saved under
the old file name.

• Lines were truncated to 72 characters by the editor, and
you want to cancel the editing session to leave the
original file intact.

A- 12 58X7338

CAPS• Primary Edit Command

Format: CAPS

Purpose: This primary command allows you to convert lowercase
characters to uppercase characters.

Remarks: This command converts AML files created with other editors
to uppercase. This is necessary if the AML file is to be
modified in the AML/Entry editor and some of the primary
commands are used during the edit session (such as CHANGE or
FIND).

Appendix A. Command/Keyword Reference A-13

Line Edit Command

Format: CC

Purpose: This line command designates the first or last line of a
block of lines to be copied. The line numbers are put in
numeric order when the command executes.

Remarks: The command must be used in conjunction with either the A
or the B line command and another CC.

Note: The A or the B command cannot be placed between the
two CC commands.

CC

A - 14 58X7338

CHANGE• Primary Edit Command

Format: C /stringl/string2/ [col-1] [col-2] [ALL]

Purposes This primary command allows you to search for a particular
character string in the file currently being edited and
change it to another string of characters.

Remarks: This primary command changes a character string located
between col-1 and col -2 to another string of characters.
Embedded blank characters are permitted in the strings. The
search for the string begins at the top line of the program
window and continues to the end of the program.

The required parameters are stringl and string2, preceded
and followed by the delimiter character / (slash). There
must be three delimiter characters present, as shown above.
Stringl and string2 may not contain the slash character. If
a slash is not used, the delimiter character is assumed to
be a blank and the command still works. The col-1 and col-2
parameters in the format limit the changes to the characters
within the area specified by the two boundaries. The col-1
parameter can be specified without the col-2 parameter, but
col-2 can not be specified without col-1. If you enter the
col-1 parameter without the col-2 parameter, the search
begins in the first column specified and continues to the
end of the line. If omitted, the entire screen is searched
(all 72 columns).

The ALL parameter specifies that the change occur every
place in the program from the top of the program window to
the end of the file. It may be specified alone or with the
column parameters. If you do not specify the ALL option,
only the first occurrence of the desired change takes place.

You can enter an abbreviated command, as shown in the
format, or use the entire command.

You can repeat a change by using the F5 key.

Example: An example of a Change command follows.

Appendix A. Command/KeywOrd Referende A - 15

COMMAND INPUT --> C /POINT/PT/ ALL
lelkAA****AANA

1 P1:NEW POINT(300,300,0);
2 P2:NEW POINT(0,650,0,0);
3 GOHOME:SUBR; --MOVE HOME
4 PMOVE(POINT(650,0,0,0)); --HOME FOR 7545
5 END;
6 PMOVE(P1); --GO TO POINT 1
7 PMOVE(P2); --GO TO POINT 2
8 GOHOME; --GO HOME
9 END;

RESULT:

COMMAND INPUT -->

1 P1:NEW PT(300,300,0);
2 P2:NEW PT(0,650,0,0);
3 GOHOME:SUBR; --MOVE HOME
4 PMOVE(PT(650,0,0,0)); --HOME FOR 7545
5 END;
6 PMOVE(P1); --GO TO POINT 1
7 PMOVE(P2); --GO TO POINT 2
8 GOHOME; --GO HOME
9 END;

•

A-16 58X7338

COMPC

AML/Entry Command

Format: COMPC(expressionl condition expression2,1abel);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This command allows you to compare a mathematical
expression to another mathematical expression. See
"Expressions" on page 4-48 for a discussion of
expressions.

If the condition is met, the statement branches to the
specified label. Allowable conditions are listed below.
Enter exactly as shown.

LT or <
LE or <=
GT or >
GE or >=
EQ or =
NE or <>

less than
less than or equal to
greater than
greater than or equal to
equal to
not equal to

Do not enter '=< 1 for t <=', 1 =>' for I >= 1 , or >< for <>;
the order is important.

When comparing real-valued expressions for equality or
inequality, small round-off errors could cause
unexpected results. It is better to use the ABS
function to see if the two expressions are within a
small amount (i.e. 0.0001) of each other.

For the compiler to be able to discern the alphabetic
operators from their surrounding expressions, the
alphabetic operators must be surrounded by at least one
blank one each side. The following statements are
identical:

COMPC(CTR EQ 0,CONTINUE);
COMPC(CTR=0,CONTINUE);

Appendix A. Command/Keyword Reference A-17

Example: An example of a COMPC command is shown below.

MAIN: SUBR;
CARD_POINT :
CARD_POINT2
STOP POINT :
NEW RACE :

NEW PT(0,450,0,0);
: NEW PT(0,350,0,0);
NEW 5; -- the DI point to guard
NEW PT(0,0,0,0);

-- move to the start point
-- guard for the stop point

PMOVE(CARD_POINT);
GUARDI(STOP_POINT,1):
PAYLOAD(11);
LINEAR(1);
PMOVE(CARD_POINT2); -
COMPC(MSTATUSO<>0,HERE);-

NOGUARD; -
LINEAR(5);
PAYLOAD(5);
BRANCH(EN);

HERE: WHERE(NEW_PLACE);
PUT(NEW_PLACE);

EN:
END;

- move to the new point
- if stopped by guard
- send point to host
- disable motion guard

-- read the stop location
-- send location to host
-- the remainder of the program

A-18 58X7338

cos

•
AML/Entry Arithmetic Function

Format: COS(expression)

Manipulators: This command is applicable to all systems using
An/Entry Version 4.

Purpose: This arithmetic function returns the cosine of an
expression.

Remarks: This function is useful for making the manipulator move
in a circle. A circle is described by the following
parametric equations:

X=X0 + R*COS(THETA)
Y=Y0 + R*SIN(THETA)

The center of the circle is at (X0,Y0), the radius is R,
and THETA is a parameter that traces a circle as it is
varied from 0 to 360 degrees. See "Expressions" on
page 4-48 for a discussion of expressions.

Examples:

COS(0) = 1
COS(45) = SQRT(2)/2
COS(-90) = 0

Appendix A. Command/Keyword Reference A-19

COUNTER

AML/Entry Keyword

Format: name:STATIC COUNTER;

Purpose: This keyword defines a name to be a counter.

Remarks: A counter can hold either an integer or real value, but all
integers are stored in real number format. The range for a
counter is approximately from -9.2E18 to +9.2E18. As long
as a counter is assigned an integer value (or an expression
consisting only of integer constants, integer arithmetic
functions, and the operators +, -, and *), then the exact
value will be stored. Counters which hold real values are
subject to a small round-off error which can almost always
be ignored. The round-off error only comes into play when a
COMPC or TESTC command is executed.

When your program is loaded, the initial value for the
counter is O. The counter's value can be changed during
program execution by the counter commands INCR, DECR, GET,
and SETC.

A counter retains its last value from one invocation of the
program to the next. You can restore the starting value of
the counter by one of these methods:

• Reloading the application program from the Personal
Computer.

• Using a digital input to activate a subroutine in your
application program to set the counter to a starting
value when required.

• Using the host initiated data drive (option C "80") from
Comaid.

Example: CTR1 in the example is a global counter used to build 200
parts before going to the next assembly process (which is
not shown). In this application each time a starting
counter value is desired, DI 16 receives an input to set the
counter to O. The program branches to line 6 of the program
if line 4 does not receive a DI 16 signal with a value of 1.

A -20 58X7338

COMMAND INPUT -->

1 CTR1:STATIC COUNTER;
2 START:SUBR;
3 SET:SUBR;
4 TESTI(16,0,NOCHANGE)
5 SETC(CTR1,0);
6 NOCHANGE:
7 END;
8 SET; --CALL SET

PART1:
10 SETC(CTR1,CTR1+1);
11
12

•

PARTS ASSEMBLE STATEMENTS
13 -- PARTS ASSEMBLE STATEMENTS
14
15 COMPC(CTR1 NE O,PART1);--TEST COUNT
16 END;

; IS DI 16 ON
--SET COUNTER TO ZERO
--BYPASS RESET

SUBROUTINE FOR COUNTER

--ADD 1 TO THE COUNTER

Appendix A. Command/Keyword Reference A-21

CSTATUS

AML/Entry Command and Arithmetic Function

Format (command): CSTATUS (count er_name) ;

Format (arithmetic function): CSTATUS()

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This command/function allows you to determine if the
controller is able to initiate a data transfer in an
AML/Entry program.

The CSTATUS command is used to monitor communication
system status. The command form assigns the CSTATUS to
a counter. The arithmetic function form returns a value
which can be used in an AML/Entry expression. See
"Expressions" on page 4-48 for a discussion of
expressions. The following commands show how the
different forms of CSTATUS may be used to attain
identical results.

CSTATUS(counter_name);
SETC(counter_name,CSTATUS());

The advantage of using the arithmetic function form is
that the CSTATUS may appear immediately in a TESTC or
COMPC, because these commands allow expressions. The
command form requires a counter be declared to hold the
CSTATUS value.

The value returned into a counter when a CSTATUS is
performed represents the state of the communication
line, as outlined below.

15 = controller enabled to communicate
Not 15 = controller not enabled to communicate

The below listed conditions must be present before a 15
is returned.

• Host Connection (DSR) Active
• Communications Cable Connected
• Controller On-Line
• Controller In Xon'ed State

A -22 58X7338

Example 1: An example of a CSTATUS command is shown below in a
program fragment.

TOP: WRITEO(COM_CK,1);
TESTC(CSTATUS(),15, GOOD1); -- IS THE CONTROLLER
WAITI(OP_OK,1,0); -- ABLE TO COMMUNICATE?

GOOD1: -- CONTINUE PROGRAM

Example 2: The following program fragment shows how the CSTATUS
function can be used to ensure data drive will be performed
by a GET command.

LBL: COMPC(CSTATUS() NE 15, LBL);
GET(PT1);

Appendix A. Command/Keyword Reference A-23

Line Edit Command

Format:

Purpose: This line command deletes the single line where the command
has been entered. The line numbers are put in numeric order
when the command is executed.

D

•

A-24 58X7338

Line Edit Command

Format: DD

Purpose: This line command designates the first or last line of a
block of lines inclusively to be deleted. The line numbers
are put in numeric order when the command is executed.

Remarks: Use this command in conjunction with another CO.

DD

•

Appendix A. Command/Keyword Reference A-25

DECR

AML/Entry Command

Format: DECR(counter_name);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: - 	This command decrements the named counter by the value
of 1.

Remarks: The counter name can be passed to a subroutine as a
formal parameter; if it is, the DECR command does not
change the value of the calling argument. In other
words, the counter only changes its value in the
subroutine it is passed to. The counter does not change
its value outside the subroutine it is passed to.

The following two statements are identical.

DECR(counter_name);
SETC(counter_name,counter_name-1);

•

•

•
A-26 58X7338

Example: CTR1 in the example is a counter to build 200 parts
before going to the next assembly process (which is not
shown). In this application, each time a starting
counter value is desired, DI 16 receives an input to set
the counter to 200. The program branches to line 6 of
the program if line 4 does not receive a DI 16 signal
with a value of 1. Line 9 of the program reduces the
counter each time partl subroutine is called. Line 15
tests to determine if 200 partl parts have been built,
allowing a branch to part2.

COMMAND INPUT -->

1 CTR1:STATIC COUNTER;
2 START:SUBR;
3 SET:SUBR;
4 TESTI(16,0,NOCHANGE); -- IS DI 16 ON
5 SETC(CTR1,200); --SET COUNTER TO 200
6 NOCHANGE: --BYPASS COUNTER RESET
7 END;
8 PART1:SUBR; --SUBROUTINE FOR PART1
9 DECR(CTR1); --REDUCE COUNTER BY ONE

10 PART1 ASSEMBLY STATEMENT
11 END;
12 SET; --CALL SET SUBROUTINE FOR COUNTER
14 CONTINUE:PART1; --CALL SUBROUTINE FOR PART1
15 TESTC(CTR1,0,PART2); --IS COUNTER ZERO
16 BRANCH(CONTINUE); --LESS THAN 200
17 PART2:
18 --PART2 STATEMENTS
19 END;

Appendix A. Command/Keyword Reference A-27

Primary Edit Command

Format: DEL device:filename.filetype

Purpose: This primary command deletes the specified file from a
diskette (or fixed disk drive if your system has one).

Remarks: In the special case where you delete a file from the
diskette that you are currently editing, you should use the
CANCEL command to exit the editing session. This action
prevents the copy in the editor from being saved on the
diskette. The DEL command should not be used to delete any
of the AML/E system files.

DEL

A -28 58X7338

DELAY• AML/Entry Command

Format: DELAY(seconds);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This instruction delays the execution of the next
statement for a specified time.

Remarks: The instruction should be used when instructing a slow
auxiliary device, such as a gripper, to open or close.

The delay allows the mechanical motion of those devices
to complete before making another move. The time range
for the delay is 0 seconds to 25.5 seconds in increments
of 0.1 seconds. The seconds can be a simple constant or
a counter.

Example: This example uses the DELAY command to allow the gripper
to complete its movement before the ZMOVE command.

1 PICKUP: SUBR; --SUBROUTINE TO PICKUP PART
2 PMOVE(PT(250,300,0,0)); --MOVE TO PART BIN
3 ZMOVE(-250);
4 GRASP; --PICKUP PART
5 DELAY(1); --DELAY TO ALLOW GRIPPER TO CLOSE
6 ZMOVE(0);
7 END;

Appendix A. Command/Keyword Reference A-29

DPMOVE

AML/Entry Command

Format:

Manipulators:

Purpose:

DPMOVE(<x,y,z,r>);

This command is applicable to all systems that use
AML/Entry Version 4. The change in coordinates is in
terms of X, Y, Z, and R.

The DPMOVE command is used to move the arm by a small
amount in a specified direction. DPMOVE differs from
PMOVE because PMOVE moves to a specified location, and
DPMOVE moves a specified distance. The argument
supplied to DPMOVE is a aggregate. The aggregate
represents the change in position for the arm. The
change is in the X, Y, Z, and R directions.

Remarks: The DPMOVE command interprets the aggregate in the
manipulator coordinate frame. Because it is difficult to
establish the precise orientation of this frame, DPMOVE
should not be used in an application that requires
accurate positioning of the arm.

Note: The DPMOVE command can not be used within an ITERATE
statement. Also, the aggregate needed by DPMOVE can not
be passed as a parameter to a subroutine.

A -30 58X7338

Example: The following examples show the DPMOVE command.

The first DPMOVE has offsets of 2 in the X direction, 5
in the Y direction and 0 in the Z and R directions. The
second movement is perpendicular to the first, and has
offsets of -5 in the X direction, 2 in the Y direction
and 0 in the Z and R directions.

DELTA_ROLL: NEW 0;
VECTOR: NEW <2,5,0,DELTA_ROLL>;

DPMOVE(VECTOR);
DPMOVE(<-5,2,0,DELTA_ROLL>);

The following code fragment illustrates a technique for
passing arguments to a subroutine to be used in a DPMOVE
command. Once passed to the subroutine the arguments
are put into an aggregate, and this aggregate is then
supplied to the DPMOVE command.

DELTA_ MOVE: SUBR(DX, DY, DZ);
VCTOR: NEW <DX, DY, DZ, 0>;

DPMOVE(VECTOR);
END; -- END OF DELTA MOVE

DELTA MOVE(5.2, WIDTH, -2); --LATER IN THE PROGRAM

•
Appendix A. Command/Keyword Reference A-31

AML/Entry Keyword

Format: END;

Purpose: This keyword is required for each SUBR keyword used. The
keyword indicates the last line of a subroutine.

Remarks: No other AML/Entry statement or label may follow the keyword
END on the same line. Only Comments are permitted on the
same line as the END statement.

END

A -32 58X7338

FILES

Primary Edit Command

Format: FILES [parameter]

Purpose: This primary command displays a listing of files contained
on a diskette.

Remarks: The command may be entered in several ways depending on the
type of listing desired. The methods used are the same as
those used by DOS. Some methods for entering the command
are:

FILES List all the files on the default drive

FILES A:*.* List all the files on drive A

FILES *.AML List all AML/Entry files on
the default drive

FILES name?.AML List all files on the default drive
that start with "name" and have one
other character in the name

FILES B:*.* List all the files on drive B

FILES B:*.AML List all the AML/Entry files
files on drive B

Appendix A. Command/Keyword Reference A-33

FIND

Primary Edit Command

Format: F /string/ [col-1] [col-2]

Purpose: This primary command searches for the first occurrence of
the specified string of characters in the text currently
being edited. If the string is located in the program, the
program scrolls to display the line with the string at the
top of the edit window. Blank characters are permitted in
the string.

Remarks: This primary command finds a character string located
between col-1 and col-2. Embedded blank characters are
permitted in the strings. The search for the string begins
at the top line of the program window and continues to the
end of the program.

The only required parameter is the string, preceded the
delimiter character / (slash). The string is terminated by
a second delimiter character / (slash) or the last non-blank
character. A blank character must follow the Find or F
command. If the slashes are omitted, the command still
works. If you enter the col-1 parameter without the col-2
parameter, the search begins in the first column specified
and continues to the end of the line. If omitted, the
entire screen is searched (all 72 columns).

You can enter an abbreviated command, as shown in the format
or, use the entire command.

You can repeat a find by using the F4 key.

Example: An example of a FIND command is outlined below.

F PT --finds the string 'PT'
F /PT (/ --finds the string 'PT ('

A -34 58X7338

FROMPT

AML/Entry Arithmetic Function

Format: FROMPT(point,expression)

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This arithmetic function returns the specified
coordinate of the given point. The expression will
automatically be truncated to an integer. If the
resulting integer is 1, then the X coordinate of the
point is returned; if it is 2, then the Y coordinate is
returned; if it is 3, then the Z coordinate is returned;
if it is 4, then the Roll coordinate is returned.

If the expression does not equal 1, 2, 3, or 4 (after
truncation) then an AML/Entry error occurs. If COMAID
is used to perform a R 01 (read machine status), the
error code will be Hex 32 (Invalid index for FROMPT
function). See "Expressions" on page 4-48 for a
discussion of expressions.

Examples:

PT1:NEW PT(400,400,-250,180);
HOME:NEW PT(650,0,0,0);
FROMPT(PT1,1) = 400
FROMPT(PT1,3) = -250
FROMPT(PT1,5) = AML/Entry Error
FROMPT(PT2,SQRT(2)) = 650 (SQRT(2)=1.414 which is

truncated to 1)

Appendix A. Command/Keyword Reference A-35

AML/Entry Command

Format: GET(counter name);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This command indicates to the host that the controller
requires specific data.

Remarks: The controller initiates a data drive operation, and the
application program waits until the host satisfies the
request. If the host does not respond within thirty
seconds, the application program stops and the TE
(transmission error) lamp comes on.

If a GET command is executed when the controller is not
on-line and connected to the host, then a DE (data
error) results. See -- Heading id 'fixit' unknown --
for a discussion of how this can be avoided.

GET is used to get a single counter, a single point, a
single counter within a group, or a single point within
a group as well as a group of counters or points.

Example: An example of a GET command is shown below.

MAIN: SUBR;
P : NEW PT(0,0,0,0);
INSTRS : STATIC GROUP(P,P);
FLAG : STATIC COUNTER;
LOOP :

GET(FLAG);
COMPC(FLAG=0,DONE);
GET(INSTRS);

PMOVE(INSTRS(1));
PMOVE(INSTRS(2));
BRANCH(LOOP);

DONE:

END;

-- a generic point

flag=0 means all done
-- get instructions from host

INSTRS is 2 counters
-- 1st tells the start point
-- 2nd tells the end point
-- move to start point
-- move to end point

-- continue with the program

GET

A-36 58X7338

GETFILE•

•

Primary Edit Command

Format: GETFILE filename

Purpose: This primary command allows you to insert other files into
the file currently being edited.

Remarks: In addition to filename (if no extension is entered, the
Editor assumes .AML), you must specify where the included
text is to be placed. This is accomplished by entering an A
(after) or a B (before) in the line command area. A or B
must be specified before the GETFILE command is entered on
the primary command line and the <--(enter) key is pressed.
If either A or B is not specified when GETFILE is entered,
an error results and the command must be re-entered (unless,
the ? command is used to recall the command). Errors are
also issued for an improper file name, file not found, or
file name not specified. In all cases, whatever was entered
in the line command area remains both visible and active.

Example: An example of a GETFILE command is shown below.

--STATION1.AML - - - - - - - 07-08-1985 - - - - - - - - - - -
COMMAND INPUT ---> GETFILE STATION2.AML
 - - ***********************> Top•o•ILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM

A 3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT
5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - - ***********************> BaTom•u•FILE <*********************

This example copies the contents of the STATION2.AML file into the
STATION1.AML file after line 3.

Appendix A. Command/Keyword Reference A-37

GETPART

AML/Entry Command

Format: GETPART(name);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This palletizing command moves the manipulator to the
current part of the specified pallet.

Remarks:

Example:

When GETPART is executed, the manipulator will move to
the location specified by the current part number of the
given pallet. The X and Y coordinates depend on the
current part number. The Z coordinate is not changed
from its current position. The Roll coordinate is the
Roll coordinate for the lower left point of the pallet.

The pallet does not have a current part number when the
program is loaded into the controller. Your program
controls the current part counter by using the other
pallet commands:

• name:STATIC PALLET(ll,lr,ur,ppr,parts);

• NEXTPART(name);

• PREVPART(name);

• SETPART(name,value);

• TESTP(name,value,label);

In the following pallet example, the pallet location
declaration is contained in lines 1 through 3. The
number of parts per row is 8 and the total number of
parts is 32. The STATIC PALLET keywords use all the
above information, as shown in the example. The counter
for the pallet is set in line 8. The move to the current
part position is in line 9. Line 13 increments the
current part number. Line 14 checks to see if the
current part is back at the first part. If so, the
program branches to the label "LOOP."

A -38 58X7338

COMMAND INPUT -->

1 LL:NEW PT(300,200,0,0);
2 LR:NEW PT(300,300,0,0);
3 UR:NEW PT(500,300,0,0);
4 PPR:NEW 8; --PARTS PER ROW
5 PARTS:NEW 32; --NUMBER OF PARTS
6 POINTS:STATIC PALLET(LL,LR,UR,PPR,PARTS);
7 MAIN:SUBR;
8 SETPART(POINTS,1); --SET COUNTER
9 LOOP:GETPART(POINTS); --PALLET MOVE
10 ZMOVE(-250); GRASP; DELAY(1); ZMOVE(0);

--PICK UP PART
11 PMOVE(PT(250,300,0,0)); --MOVE FROM PALLET
12 ZMOVE(-250); RELEASE; DELAY(1); ZMOVE(0);

--DROP OFF PART
13 NEXTPART(POINTS); --CHANGE COUNTER
14 COMPC(TESTP(POINTS) NE 1,LOOP);
15 WAIT(16,1,0); --WAIT FOR INPUT
16 END;

Appendix A. Command/Keyword Reference A-39

GRASP

AML/Entry Command

Format: GRASP;

Manipulators:

Purpose:

Remarks:

Example:

This command is applicable to all systems using
AML/Entry Version 4.

This instruction closes digital output (DO) point 2. In
an unmodified system, DO point 2 controls the air supply
for a gripper.

A delay instruction may be required following the
GRASP instruction to allow the mechanical motion of a
gripper to complete before the next move.

This example uses the GRASP command to allow the gripper
to pick up a part.

1 PICKUP: SUBR; --SUBR TO PICKUP PART
2 PMOVE(PT(250,300,0,0)); --MOVE TO PART BIN
3 ZMOVE(-250);
4 GRASP; --PICKUP PART
5 DELAY(1); --DELAY SO GRIPPER CAN CLOSE
6 ZMOVE(0);
7 END;

A -40 58X7338

GROUP

AML/Entry Keyword

Format: GROUP(PT1,PT2,...PTn);
GROUP(value,value,...value);

Manipulators: This keyword is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This keyword allows you to group data together and then
refer to individual elements using an index.

A group must be defined as STATIC. It consists of
either points, single-valued counters, or constants. A
group consists of only one type of entity, a group of
points or a group of counters. The index into a Group
is 1 based. For example, 'INCR (COUNT(0));' would cause
an error. All elements of a Group must contain initial
values. A group must contain at least one element. The
maximum number of elements is limited only by available
controller memory.

Example 1: An example of a GROUP keyword is shown below.

POINT1:
POINT2:
POINT3:

FIXTURES:
INDEX:

NEW PT(0,500,0,0) ; -
NEW PT(0,600,0,0) ; -
NEW PT(50,500,0,0) ; -
STATIC GROUP (POINT1,POINT2
STATIC COUNTER ; -

- location of fixture 1
- location of fixture 2
- location of fixture 3
,POINT3) ;
- the index into fixtures

MAIN:

TRY:

SUBR ;
SETC (INDEX,1) ;
PMOVE (FIXTURES(INDEX)) ; -
INCR (INDEX) ;
TESTC (INDEX,4,EN) ;
BRANCH (TRY) ;

- start at the first fixture
- move to fixture
- go to next fixture
- moved to all 3 fixtures
- if not move again

EN: -- the rest of the program
END;

Appendix A. Command/Keyword Reference A-41

Example 2: When an individual point or counter of a group is
referenced, an index must be given. The only time a group
may be referenced without an index is in the GET or PUT
commands. For example, suppose a global group of 4
counters is used to declare a point, PT1. The following
would be have to be used:

GR:STATIC GROUP(650,0,0,0);
PT1:NEW PT(GR(1),GR(2),GR(3),GR(4));

It is tempting to want to use GR without indices, but this will cause a
compiler error. Each time the program cycles back to the beginning of
the program, PT1 will get reassigned new values based on the current
values of GR.

•

A-42 58X7338

GUARDI

AML/Entry Command

Format: GUARDI(digital_input_port,value);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This command allows you to treat a DI port as a motion
guard. It provides the ability to interrupt a motion,
based on an external input.

Remarks: When motion occurs, the controller checks the digital
input (DI) port value. If it attains the specified
value, motion is halted. Version 4 allows a DI port to
be treated as a motion guard. The manipulator does not
stop program execution, but regards the move as
completed. The digital_input_port and value can consist
of constants, formal parameters, or counters. A value
of zero guards for an "open " state of the
digital_input_port, a nonzero value guards for a
"closed" state.

Only one DI point is used as a motion guard at any one
time. Whenever the GUARDI command is encountered,
monitoring is changed to the newly-specified point. If
a previous value was in effect, it is lost. However,
the controller does not lose the current value when it
is changed by a subroutine. For example, if GUARDI is
set to a particular DI point and value, and a subroutine
that changes the guard data is called, the new data is
used for monitoring while the subroutine remains active.
When the subroutine ends, and control is returned to the
caller, the controller automatically restores the
caller's guard parameters.

If a move is stopped by a DI point, the system
automatically updates its internal location variables so
that a DPMOVE executed immediately after a DI guarded
motion acts as expected (moves a delta amount from where
the arm came to rest.)

Appendix A. Command/Keyword Reference A-43

Example: An example of a GUARDI command is shown below.

MAIN: SUBR;
CARD_POINT : NEW PT(0,450,0,0);
CARD POINT2 : NEW PT(0,350,0,0);
STOP POINT : NEW 5; -- the DI point to guard
NEW_ fLAC E : NEW PT(0,0,0,0);

PMOVE(CARD_POINT); -
GUARDI(STOP_POINT,1): -
PAYLOAD(11); -
PMOVE(CARD_POINT2); -
COMPC(MSTATUSO<>0,HERE);-

NOGUARD; -
LINEAR(5);
PAYLOAD(5);
BRANCH(EN);

HERE: WHERE(NEW_PLACE);
PUT(NEW_PLACE);

EN:
END;

- move to the start point
- guard for the stop point
- set low speed for quick stopping
- move to the new point
- if stopped by guard
- send point to host
- disable motion guard

•

-- read the stop location
-- send location to host
-- the remainder of the program

A-44 58X7338

• Line Edit Command

Format: I[n]

Purpose: This line command inserts n number of blank line(s)
following the line where the command is entered. The number
substituted for the n must be a single digit number; the
maximum number for n is 9. The number 1 is not needed when
a single line is desired. The line numbers are put in
numeric order when the command is executed.

Appendix A. Command/Keyword Reference A-45

INCR

AML/Entry Command

Format:

Manipulators:

Example:

INCR(counter name);

This command is applicable to all systems using
AML/Entry Version 4.

This command increments the specified counter by 1.

The counter name can be passed to a subroutine as a
formal parameter; if it is, the INCR command does not
change the value of the calling argument. In other
words, the counter only changes its value in the
subroutine it is passed to. The counter does not change
its value outside that subroutine.

The following two statements are identical.

INCR(counter_name);
SETC(counter name,counter name+1);

CTR1 in the example is a counter to build 200 parts
before going to the next assembly process (which is not
shown). In this application each time a starting counter
value is desired, DI 16 receives an input to set the
counter to 0. The program branches to line 6 of the
program if line 4 does not receive a DI 16 signal with a
value of 1. Line 9 of the program increases the counter
each time the partl subroutine is called. Line 15 tests
to determine if 200 partl parts have been built,
allowing code execution to fall through to the "PART2"
label.

Purpose:

Remarks:

A -46 58X7338

COMMAND INPUT -->

1 CTR1:STATIC COUNTER;
2 START:SUBR;
3 SET:SUBR;
4 TESTI(16,O,NOCHANGE); --IS DI 16 ON
5 SETC(CTR1,0); --SET COUNTER TO ZERO
6 NOCHANGE: --BYPASS COUNTER RESET
7 END;
8 PART1:SUBR; --SUBROUTINE FOR PART1
9 INCR(CTR1); --INCREASE COUNTER BY ONE

10 PART1 ASSEMBLY STATEMENT
11 END;
12 SET; --CALL SET SUBROUTINE FOR COUNTER
13 CONTINUE:
14 PART1; --CALL SUBROUTINE FOR PART1
15 COMPC(CTR1<200,CONTINUE);--IS COUNTER 200
16 PART2:
17 --PART2 STATEMENTS
18 END;

Appendix A. Command/Keyword Reference A-47

I TERATE

AML/Entry Command

Format: ITERATE('command',<aggregate>,<aggregate>,...);

ITERATE('subr',<aggregate>,<aggregate>,...);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This instruction repeatedly executes an AML/Entry
command or subroutine with different values until all
the values are used in the command or subroutine. The
values are put in an aggregate and the aggregate is a
parameter of the ITERATE statement. When all values in
the aggregate have been used, the next statement
executes.

The AML/Entry command or name of a subroutine to be
repeated is defined as a character string and enclosed
in single quotes ('). The ITERATE command does not
allow expressions to appear as arguments. Thus even
though an AML/Entry command may allow expressions to
appear as arguments, when the command is repeated by an
ITERATE, expressions may not be used. In this case, the
arguments must be integer constants, real constants, or
counters, depending on the particular command.

•
A -48 58X7338

Example 1: The PMOVE statement is repeated until all the values in
PATH are exercised one time. The values of PATH are P1
through P15.

Example 2:

COMMAND INPUT -->

1 DEMO:SUBR;
2 Pl:NEW PT(500,400,0,0);
3 P2:NEW PT(450,400,0,0);
4 P3:NEW PT(400,400,0,0);
5 P4:NEW PT(350,400,0,0);
6 P5:NEW PT(300,400,0,0);
7 P6:NEW PT(250,400,0,0);
8 P7:NEW PT(200,400,0,0);
9 P8:NEW PT(150,400,0,0);

10 P9:NEW PT(100,400,0,0);
11 P10:NEW PT(50,400„00);
12 PH:NEW PT(0,400,0,0);
13 P12:NEW PT(-50,400,0,0);
14 P13:NEW PT(-100,400,0,0);
15 P14:NEW PT(-150,400,0,0);
16 P15:NEW PT(-200,400,0,0);
17 PATH:NEW <P1,P2,P3,P4,P5,P6,P7,
18 P8,P9,P10,P11,P12,P13,P14,P15>;
19 ITERATE('PMOVE',PATH);
20 END;

This example does the same task as the previous example,
but the method of programming shortens the program. A
different value of X is substituted in the subroutine
SLMOVE. The ITERATE statement loops on the subroutine
SLMOVE until all values of X are exercised.

COMMAND INPUT -->

1 DEMO:SUBR;
2 X:NEW <500,450,400,350,300,250,200
3 150,100,50,0,-50,-100,-150,-200>;
4 SLMOVE:SUBR(X);
5 P:NEW PT(X,400,0,0);
6 PMOVE (P);
7 END;
8 ITERATE('SLMOVE',X);
9 END;

Appendix A. Command/Keyword Reference A-49

LEFT

AML/Entry Command

Format:

Manipulators:

Example:

LEFT;

This command is only applicable to the 7545-800S
manufacturing system.

Switches the manipulator to left mode.

The 7545-8005 is a symmetric arm manipulator, thus there
are points that can be reached in two different ways (in
either left or right mode). There are also points that
can only be reached in left mode or only in right mode.
The LEFT command specifies that all subsequent motion
commands (i.e. PMOVE, DPMOVE, GETPART, XMOVE, ZMOVE)
will be performed in left mode. If a point is specified
that can only be reached in right mode, then a data
error (point out of workspace) occurs.

The point PT1 in the following example can only be
reached in left mode. When the 7545-800S is returned
home, it is placed in right mode. Thus before a move to
PT1, the LEFT command must be given.

COMMAND INPUT -->

1 DEMO:SUBR;
2 PT1:NEW PT(500,-500,0,0);
3 LEFT;
4 PMOVE(PT1);
5 END;

Purpose:

Remarks:

A -50 58X7338

LINEAR

AML/Entry Command

Format: LINEAR(quality);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This command changes the motion between goals from an
arc to straight line motion or back to an arc.

A 1 for the quality gives the straightest achievable
manipulator move along a line between two points. A
quality of 50 gives the greatest deviation from straight
and the fastest manipulator move along a line between
two points. A quality of 0 disables the linear motion.
The "quality" in the statement determines the number of
calculated points made by the controller between the
current location and the next goal to maintain a
straight move. For example, a quality of 50 results in
50 millimeters between each point calculated by the
controller until it arrives at the goal.

Stated simply, the lower
straighter the line, and the
arm moves. A slower movement

The quality can consist of an
parameter, or a counter.

the quality value, the
slower the manipulator's
is more accurate.

integer constant, a formal

Note: When the controller reaches the last END;
statement in the program, it automatically defaults to
the standard arc movements. If you want to maintain
linear motion, the LINEAR statement must precede the
first PMOVE statement in the program.

The programmed linear moves must remain within the
borders of the linear area defined in IBM Manufacturing
Systems Specification Guide, 8577126. Linear moves
extending outside the linear work space can cause error
conditions and unpredictable results.

Note: The Home position is not in the valid linear
workspace. The arm cannot make LINEAR movements from
Home.

Appendix A. Command/Keyword Reference A-51

Example: This example shows simple movements between points.
Different speeds and accuracies occur depending on the
condition set by the LINEAR statement.

COMMAND INPUT -->

1 DEMO:SUBR;
2 START:SUBR;
3 PMOVE (PT(400,400,-100,0));
4 LINEAR(1); -- SLOW PATH
5 PMOVE (PT(500,300,-50,0));
6 LINEAR(0); -- DISABLE STRAIGHT
7 END;
8 PMOVE (PT(300,300,-75,0));
9 LINEAR(50); -- FAST PATH

10 START;
11 END;

•

A-52 58X7338

LOCATE

Primary Edit Command

Format: LOCATE n

L n

Purpose: This primary command places the indicated line number at the
top of the program window.

Remarks: You can enter an abbreviated command, as shown in the
format, or use the entire command.

Appendix A. Command/Keyword Reference A-53

Line Edit Command

Format:

Purpose: This line command indicates a single line to be moved. The
line is relocated after the line that contains the A line
command or before the line that contains the B line
command. The line numbers are put in numeric order when the
command is executed.

Remarks: This command is used in conjunction with the A or B line
commands.

M

•

A-54 58X7338

Line Edit Command

Format: MM

Purpose: This line command indicates a block of lines to be moved.
The block is moved after the A or before the B command.
The line numbers are put in numeric order when the command
is executed.

Remarks: This command is used in conjunction with another MM and
either the A or B commands.

Note: The A or B commands cannot be placed between the MM
commands.

MM

Appendix A. Command/Keyword Reference A-55

MSTATUS

AML/Entry Command and Arithmetic Function

Format (command): MSTATUS(counter_name);

Format (arithmetic function): MSTATUS()

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This command/function allows you to determine the
completion status of the current move.

Remarks: The command form assigns the motion status into a
counter. The arithmetic function form returns a value
which can be used in an AML/Entry expression. See
"Expressions" on page 4-48 for a discussion of
expressions. The following commands show how the
different forms of MSTATUS may be used to attain
identical results.

MSTATUS(counter_name);
SETC(counter_name,MSTATUS());

The advantage of using the arithmetic function form is
that the MSTATUS may appear immediately in a TESTC or
COMPC, because these commands allow expressions. The
command form requires a counter be declared to hold the
MSTATUS value.

The controller maintains a special status byte to
monitor the completion of an entered command move. Data
returned by MSTATUS is as outlined below.

0 = move completed normally
1 = move terminated by GUARDI
2 = move never started due to a GUARDI

A-56 58X7338

Example: An example of an MSTATUS command follows.• MAIN: SUBR;
CARD POINT : NEW PT(0,450,0,0);
CARD POINT2 : NEW PT(0,350,0,0);
STOP POINT : NEW 5; -- the DI point to guard
NEW PLACE : NEW PT(0,0,0,0);

PMOVE(CARD_POINT);
GUARDI(STOP_POINT,1):
PAYLOAD(11);
LINEAR(1);
PMOVE(CARD_POINT2);
COMPC(MSTATUSO<>0,HERE);

NOGUARD;
LINEAR(5);
PAYLOAD(5);
BRANCH(EN);

HERE: WHERE(NEW PLACE);
PUT(NEW_PLACE);

EN:
END;

-- move to the start point
-- guard for the stop point

-- move to the new point
-- if stopped by guard
-- send point to host
-- disable motion guard

-- read the stop location
-- send location to host
-- the remainder of the program

Appendix A. Command/Keyword Reference A-57

AML/Entry Keyword

Format: name:NEW PT(coordinates);

name:NEW 'string';

name:NEW <aggregate>;

name:NEW n;

Purpose: This keyword identifies a constant. A constant may be a
number, point, character string, or an aggregate. An
aggregate is multiple points, numbers, or character strings.

Example: The following program fragment shows the declaration of a
NEW aggregate, constant, number constant, point constant,
and string constant.

COMMAND INPUT -->

1 PORTS:NEW <3,4,5,6>; --AGGREGATE
2 ZERO:NEW 0; --NUMBER
3 PORT:NEW 8; --NUMBER
4 POINT:NEW PT(650,0,0,0); --POINT
5 POINT2:NEW PT(650,ZERO,ZERO,ZERO);
6 --POINT2 USES CONSTANT FROM LINE 2
7 NAME:NEW 'POINT'; --STRING

NEW

A-58 58X7338

NEXTPART

AML/Entry Command

Format: NEXTPART(name);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This command is a palletizing command that increases the
current part by 1.

The pallet name used in the NEXTPART command can be
passed to the command as a formal parameter, but since
parameters are passed by value, the changed part number
is only affected in the subroutine that is called. The
part number of the calling subroutine is not changed.

Note: When NEXTPART is used to advance the part number
beyond the maximum number of parts specified for the
pallet, the current part "wraps around" and becomes 1.
NEXTPART does not set the part number to a number
greater than the maximum number of parts in the pallet.

In addition to the NEXTPART command, other pallet
statements are:

Example:

• name:STATIC PALLET(ll,lr,ur,ppr,parts);

• GETPART(name);

• PREVPART(name);

• SETPART(name,value);

• TESTP(name,value,label);

In the following pallet example, the pallet location
declaration is contained in lines 1 through 3. The
number of parts per row is 8 and the total number of
parts is 32. The STATIC PALLET uses all the above
information, as shown in the example. The counter is
advanced from 0 to 1 the first time statement 8
executes. Each following execution, the counter is
increased by 1. The move to the current part position
is done in line 9. Line 17 advances the current part,
and line 18 checks to see if the current part is back to
1 (in which case all the parts have been processed).

Appendix A. Command/Keyword Reference A-59

When all the parts have been processed, the program
waits for an input to start over at part number 1.

COMMAND INPUT -->

1 LL:NEW PT(300,200,0,0);
2 LR:NEW PT(300,300,0,0);
3 UR:NEW PT(500,300,0,0);
4 PPR:NEW 8; --PARTS PER ROW
5 PARTS:NEW 32; --TOTAL # OF PARTS
6 POINTS:STATIC PALLET(LL,LR,UR,PPR,PA RTS);
7 MAIN:SUBR;
8 SETPART(POINTS,1); --SET PALLET
9 LOOP:GETPART(POINTS); --PALLET MOVE

10
11
12
13
14
15
16
17
18
19 DONE
20 END;

ZMOVE(-250);
GRASP; DELAY(1);
ZMOVE(0);
PMOVE(PT(250,300,0,0));
ZMOVE(-250);
RELEASE; DELAY(1);
ZMOVE(0);
NEXTPART(POINTS);
COMPC(TESTP(POINTS)<>1,LOOP);
:WAITI(16,1,0);

--PICK UP PART
--RAISE Z
--MOVE FROM PALLET
--LOWER Z
--DROP OFF PART
--RAISE Z
--CHANGE COUNTER
--TEST COUNTER
--WAIT FOR INPUT

•

NOGUARD

AML/Entry Command

Format: NOGUARD;

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: The NOGUARD command is used to cancel the GUARDI (motion
guard) feature.

Remarks: None

Example: An example of a NOGUARD command is shown below.

MAIN: SUBR;
CARD POINT : NEW PT(0,450,0,0);
CARD—POINT2 : NEW PT(0,350,0,0);
STOP—POINT : NEW 5; -- the DI point to guard
NEW PLACE : NEW PT(0,0,0,0);

PMOVE(CARD_POINT);
GUARDI(STOPPOINT,1):
PAYLOAD(11);
PMOVE(CARD_POINT2); -
COMPC(MSTATUSO<>0,HERE);-

NOGUARD; -
LINEAR(5);
PAYLOAD(5);
BRANCH(EN);

HERE: WHERE(NEW_PLACE);
PUT(NEW_PLACE);

EN:
END;

- move to the start point
- guard for the stop point

- move to the new point
- if stopped by guard
- send point to host
- disable motion guard

-- read the stop location
-- send location to host
-- the remainder of the program

Appendix A. Command/Keyword Reference A-61

PALLET

AML/Entry Keyword

Format: name:STATIC PALLET(LL,LR,UR,PPR,PARTS);

Purpose: This keyword defines a "name" to be a pallet.

Remarks: The parameters in the parentheses following the pallet
keyword provide location information of the coordinates for
three corner goals of the pallet, the number of parts per
row, and the number of parts. The LL is the lower left part
location. The LR is the lower right part location. The UR
is the upper right part location. The PPR is the number of
parts per row, and the PARTS is the number of parts.

The controller keeps track of which part is the current
part. When you load your application program, the current
part is not defined. You must define the first part with a
SETPART statement. The part numbers in the control map
start at the corner that you define as the lower left
increasing to the corner you define as the lower right. The
example shows two arrangements of a pallet with 12 parts and
four parts per row.

UR I LL LR
9 10 11 12 1 1 2 3 4
5 6 7 8 1 5 6 7 8
1 2 3 4 1 9 10 11 12
LL LR I UR

A one dimensional pallet can be defined in two different
ways, either as a row or a column. To define a one
dimensional pallet as a row, the LR and UR points must be
the same, and the PPR must equal PARTS. To define a one
dimensional pallet as a column, the LL and LR points must be
the same, and the PPR must equal 1. In either case, the LL
point will correspond to the first part and the UR point
will correspond to the last part. As far as the AML/Entry
Compiler is concerned, they are identical.

Your program must set the pallet to a valid part position
before attempting to use the pallet move command the first
time. Refer to the following commands for details about
counter control and move commands:

• GETPART(name);
• NEXTPART(name);
• PREVPART(name);
• SETPART(name,value);
• TESTP(name,value,label);

A -62 58X7338

Example 1: In the following pallet example, the pallet location
declaration is contained in lines 1 through 3. The number of
parts per row is 8 and the total number of parts is 32. The
STATIC PALLET uses all the above information as shown in
the example. The NEXTPART statement in line 8 advances the
counter each time the statement is encountered. The move to
the current part position is done in line 9. Line 17
advances the current part, and line 18 checks to see if the
current part is back to 1 (in which case all the parts have
been processed). When all the parts have been processed,
the program waits for an input to start over at part number
1

Note: The Z coordinate in pallet point declarations is
ignored; the Z coordinate from the last position is
maintained. Therefore, it is important to move the Z arm
before issuing a GETPART, to avoid a collision in the
workspace. For palletizing to work properly, it is assumed
the pallet is perpendicular to the Z-axis. It should also be
noted that the Roll coordinate is always the Roll of the
lower left point. It is not possible to change the degree
of roll in the arm during pallet execution (except by using
separate DPMOVE command).

COMMAND INPUT -->

1 LL:NEW PT(300,200,0,0);
2 LR:NEW PT(300,300,0,0);
3 UR:NEW PT(500,300,0,0);
4 PPR:NEW 8; --PARTS PER ROW
5 PARTS:NEW 32; --TOTAL # OF PARTS
6 POINTS:STATIC PALLET(LL,LR,UR,PPR,PARTS);
7 MAIN:SUBR;
8 SETPART(POINTS,1); --SET PALLET
9 LOOP:GETPART(POINTS); --PALLET MOVE

10 ZMOVE(-250);
11 GRASP; DELAY(1); --PICK UP PART
12 ZMOVE(0); --RAISE Z
13 PMOVE(PT(250,300,0,0)); --MOVE FROM PALLET
14 ZMOVE(-250); --LOWER Z
15 RELEASE; DELAY(1); --DROP OFF PART
16 ZMOVE(0); --RAISE Z
17 NEXTPART(POINTS); --CHANGE COUNTER
18 COMPC(TESTP(POINTS<>1, LOOP); --TEST COUNTER
19 DONE :WAITI(16,1,0); --WAIT FOR INPUT
20 END;

Example 2: The following program shows how to declare a one
dimensional pallet.

Appendix A. Command/Keyword Reference A-63

LL: NEW PT(0,500,0,0);
LR: NEW PT(-300,500,0,0);
UR: NEW PT(-300,200,0,0);
N: NEW 5;
P: STATIC PALLET(LL,LR,LR,N,N);
Q: STATIC PALLET(LR,LR,UR,1,N);

P and Q are both one dimensional pallets with N parts. P is defined as
a row, Q as a column.

A-64 58X7338

PAYLOAD

AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

PAYLOAD(value);

This command is applicable to all systems using
AML/Entry Version 4.

This command controls tool-tip speed by overriding the
speed switches or defaulting to those switches.

The number values for speed range from the number 1 for
the slowest speed to the number 10 for the fastest
speed. The value 0 causes the switch setting to be used.
Additional values 11 through 19 are provided in Version
4. All are slower than PAYLOAD 1. Example tool-tip
speeds are listed below.

PAYLOAD(12); = 20 percent of PAYLOAD(1);
PAYLOAD(19); = 90 percent of PAYLOAD(1);

Using payloads 11 through 19 allows shorter stopping
distances when GUARDI is used to interrupt motion. This
is accomplished by using a different monitoring scheme,
no deceleration ramp, and slOwer speeds.

The value can be an integer constant, a formal
parameter, or a counter.

You must have some type of movement command between
PAYLOAD commands. If you assign a value to the PAYLOAD
command, that value can not change until some type of
movement command has been executed. If two PAYLOAD
commands are executed without a movement command in
between, a DE error can sometimes occur.

Note: When the controller reaches the last END
statement in the program, it automatically
defaults to the speed switches. If you want to
maintain a certain programmed speed, the PAYLOAD
statement must precede the first PMOVE statement
in the program.

Appendix A. Command/Keyword Reference A-65

Example An example of a PAYLOAD command is shown below.

MAIN: SUBR;
CARD_POINT : NEW PT(0,450,0,0);
CARD POINT2 : NEW PT(0,350,0,0);
STOP POINT : NEW 5; -- the DI point to guard
NEW -131AC E : NEW PT(0,0,0,0);

-- move to the start point
-- guard for the stop point

PMOVE(CARD_POINT);
GUARDI(STOP_POINT,1):
PAYLOAD(11);
LINEAR(1);
PMOVE(CARD_POINT2); -
COMPC(MSTATUSO<>0,HERE);-

NOGUARD; -
LINEAR(5);
PAYLOAD(5);
BRANCH(EN);

HERE: WHERE(NEW_PLACE);
PUT(NEW_PLACE);

EN:
END;

- move to the new point
- if stopped by guard
- send point to host
- disable motion guard

-- read the stop location
-- send location to host
-- the remainder of the program

A-66 58X7338

PMOVE

11111 AML/Entry Command

Format: PMOVE (PT(x,y,z,r));
PMOVE (point name);

Manipulators: This command is applicable to all systems that use
AML/Entry Version 4.

Purpose: This instruction moves the manipulator to a specified
position and rotation. The point coordinates are in
millimeters or inches and the roll is in degrees. The
manipulators need X, Y, Z, and R values for the command
to execute. The values may be declared names.

Remarks: The coordinates of the position may be part of the
statement if the keyword PT is included in the
statement, as shown in the example. The X, Y, Z, and R
values may be counters or constants, provided they are
declared in the program. You can also supply a name
that has been declared as a PT.

Example: The following program fragments show the PMOVE command
used in the forms described above.

ZERO:NEW 0
START:NEW PT(-650.00,0,ZER0,-180);

PMOVE (PT (650,0,-100,50));
PMOVE (START);
PMOVE (PT(650,0,-75,ZER0));

Appendix A. Command/Keyword Reference A-67

PREVPART

AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

PREVPART(name);

This command is applicable to all systems that use
AML/Entry Version 4.

This palletizing command decreases the current part by
1.

The pallet name used in the PREVPART command can be
passed to the command as a formal parameter, but since
parameters are passed by value, the changed part number
is only affected in the subroutine that is called. The
part number of the calling subroutine is not changed.

Note: When PREVPART is used to decrease the part
number and the current part is 1, then the current part
"wraps around" and becomes the maximum part number.
PREVPART does not set the part number to O.

In addition to the PREVPART command, other pallet
statements are:

Example:

• name:STATIC PALLET(ll,lr,ur,ppr,parts);

• GETPART(name);

• NEXTPART(name);

• SETPART(name,value);

• TESTP(name,value,label);

In the following pallet example, the pallet location
declaration is contained in lines 1 through 3. The
number of parts per row is 8 and the total number of
parts is 32. The STATIC PALLET uses all the above
information, as shown in the example. The counter for
the pallet is set in line 8. Line 9 changes the current
part number, allowing the program to go to the last part
number and then decrease that number each time the
statement is executed. The move to the current part
position is done in line 10. Line 13 decrements the
current part; line 14 tests to see if the current part
has not become reset to 32, and if so, the program
branches to the label "LOOP."

A -68 58X7338

COMMAND INPUT -->

1 LL:NEW PT(300,200,0,0);
2 LR:NEW PT(300,300,0,0);
3 UR:NEW PT(500,300,0,0);
4 PPR:NEW 8; --PARTS PER ROW
5 PARTS:NEW 32; --NUMBER OF PARTS
6 POINTS:STATIC PALLET(LL,LR,UR,PPR,PARTS);
7 MAIN:SUBR;
8 SETPART(POINTS,32); --SET PALLET
9 LOOP: GETPART(POINTS); --MOVE TO PART

10 ZMOVE(-250); GRASP; DELAY(1); ZMOVE(0);
11 PMOVE(PT(250,300,0,0));
12 ZMOVE(-250); RELEASE; DELAY(1); ZMOVE(0);
13 PREVPART(POINTS); --CHANGE COUNTER
14 COMPC(TESTP(POINTS)<>32,LOOP);--TEST COUNTER
15 DONE:WAIT(16,1,0); --WAIT FOR INPUT
16 END;

Appendix A. Command/Keyword Reference A-69

PRINT

Primary Edit Command

Format: PRINT

Purpose: This primary command prints the program on the optional
printer.

Remarks: You can interrupt the PRINT command by pressing the Esc
key. (The print screen method is not interrupted using the
Esc key.) If the optional printer is on, the contents of
the screen may be printed by using the shift key in
conjunction with the PrtSc key.

A -70 58X7338

AML/Entry Keyword

Format: name:NEW PT(x,y,z,r);

PMOVE(PT(x,y,z,r));

Purpose: This keyword indicates that the values following it describe
a position and rotation of a point within the work envelope.
The values within the parentheses are real or integer
numbers.

Remarks: When you declare a position and rotation using a name, you
use this keyword following the term "NEW." A space is
required between the two keywords. The name is then used in
your program when referring to that point. Using names for
your coordinates makes the program easier to understand,
because:

• Names for a point are easier to remember than numbers
when building your application program

• Teaching or changing points that are declared at the top
of the program saves more time than searching the
program for each point.

When you use the PMOVE command with coordinates rather
than a referenced name, you must include the keyword PT in
the outer set of parentheses, with the coordinates in the
inner set. (See "Format" above.)

Examples: The following program fragment shows uses of PT.

COMMAND INPUT -->

1 POINT:NEW PT(650,0,0,0); --named point declaration for
2 DEMO:SUBR; --servoed Z manipulators
3 PMOVE(POINT); --name used
4 PMOVE(PT(400,300,-100,0)); --coordinates

PT

Appendix A. Command/Keyword Reference A-71

AML/Entry Command

Format: PUT(counter_name);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This command indicates to the host that the controller
wants to send specific data.

Remarks: The controller initiates a data report operation and the
application program waits until the host accepts the
data. If the host does not respond within three
seconds, the controller re-transmits the D record. If
the controller does not respond after two retries (nine
seconds total), the application program is stopped and
the TE (transmission error) lamp comes on.

If a PUT command is executed when the controller is not
on-line and connected to the host, a DE (data error)
results. See -- Heading id 'fixit' unknown -- for a
discussion of how this can be avoided.

PUT is used to send a single counter, a single point, a
single counter within a group, or a single point within
a group as well as either a group of counters or points.

Example: An example of a PUT command is shown below.

C: STATIC COUNTER;
P: STATIC GROUP(PT1,PT2);

PUT(C); -- send value for counter
PUT(P); -- send values for two points

PUT

A - 72 58X7338

PUTFILE• Primary Edit Command

Format: PUTFILE filename

Purpose: This primary command allows you to extract all or part of
the file currently being edited and place it into another
file.

Remarks: In addition to filename (if no extension is entered, the
Editor assumes .AML), you must specify which lines of text
currently being edited are to be extracted and placed into
the new file. This is accomplished by entering the CC or C
line command in the line command area. If you want to
extract a single line, the C must be placed adjacent to that
line before entering a PUTFILE command. If a block of lines
are to be extracted, specify the CC command in the
appropriate locations.

C or a pair of CC identifiers must be specified before the
PUTFILE command is entered on the primary command line and
the <---I(enter) key is pressed.

If either C or CC is not specified when PUTFILE is entered,
an error results and the command must be re-entered (unless,
the ? command is used to recall the command). Error
messages are also issued for an improper filename or for the
name of a file that already exists. Appending to an
existing file is not allowed.

Appendix A. Command/Keyword Reference A-73

Example: An example of a PUTFILE command is shown below.

--STATION1.AML - - - - - - 07-08-1985 - - - - - - - - - -
COMMAND INPUT ---> PUTFILE STATION2.AML
 - ***********************> Top•0F•FILE <************************

1 EASY TO PROGRAM
2 EASY TO PROGRAM

CC 3 THE IBM MANUFACTURING SYSTEM
4 PICK AND PLACE ROBOT

CC 5 IS VERSATILE
6 EASY TO PROGRAM
7 THE IBM MANUFACTURING SYSTEM
8 PICK AND PLACE ROBOT
9 IS VERSATILE

 - ***********************> goTTom•u•FILE <*********************

This example copies the marked contents (lines 3 through 5) of the
STATION1.AML file into a new file labelled STATION2.AML.

A-74 58X7338

Line Edit Command

Format: R[n]

Purpose: This line command repeats the line on which the command is
entered. The repeated line is located below the original
line. You may repeat a line up to nine times by specifying
the number after the command. If the number (n) is omitted,
a single repeat of a line is executed. The line numbers are
put in numeric order when the command is executed.

R

Appendix A. Command/Keyword Reference A-75

REGION

AML/Entry Keyword

Format: R: STATIC REGION
(LL,UL,LR,UR,LS_LEN,RS_LEN,TOP_LEN,BOT_LEN);

Manipulators: This keyword is applicable to all systems using
AML/Entry Version 4.

Purpose: This keyword allows you to define a region of space as
an independently existing entity.

Remarks: Version 4 allows you to define a frame of reference in
the manipulator workspace that corresponds to some
external coordinate system. A frame of reference allows
you to describe motions in this area that are relative
to the region itself, not to the manipulator coordinate
systems. Primary use of this feature is to allow
application programs to be constructed to accept host
data that refer to some engineering abstract of the
assembly object (such as computer-aided design data),
rather than requiring taught point data. Because of
this, the program may be replicated across multiple
machines without changes in the host data base (all
applications use the same set of host data).

Moving to taught points is unaffected by regions. Also
listed below, are the arguments required to show where
the spatial coordinates are with respect to the
manipulator frame (taught points).

LL = taught lower-left corner coordinate
LR = taught lower-right corner coordinate
UL = taught upper-left corner coordinate
UR = taught upper-right corner coordinate
LS_LEN = user-defined left side length
RS_LEN = user-defined right side length
TOP LEN = user-defined top length
BOT LEN = user-defined bottom length

The definition accepts formal parameters. Note that the
region need not be rectangular. In cases where the
region is rectangular, its use is easily understood.
Skewed parallelograms function in a logical manner as an
extension of rectangular behavior.

You are able to define points relative'to a region.
This is especially useful in moving to coordinates that
have been generated externally. For example, consider a

•

•
A -76 58X7338

rectangular region somewhere in the workspace. A circuit
board is placed in this region so that the card is
aligned with the X and Y directions of the region (not
the manipulator). If the card is to be populated, the
external system knows the locations of the components to
be inserted in that coordinate system. If a point is
down loaded from the host, you are able to cause the
manipulator to move to the correct location in the
workspace by entering the below outlined command.

XMOVE(region_name,point_name);

Here, region_name is the name used in the REGION
definition and point_name is a point in REGION
coordinates.

The roll values of the LL, UL, LR, and UR points are
entirely ignored. The roll orientation is determined by
the line drawn from the LL point to the LR point. A
positive roll value in point_name corresponds to a
counterclockwise rotation from this line. A negative
roll value in point_name corresponds to a clockwise
rotation from this line.

Appendix A. Command/Keyword Reference A-77

Example:

LLPT:
LRPT:
ULPT:
URPT:
REG1:
CTR1:
CTR2:
MAIN:

An example of the REGION keyword is shown below.

NEW PT(0,350,0,0);
NEW PT(100,350,0,0);
NEW PT(0,550,0,0,0);
NEW PT(100,550,0,0);
STATIC REGION(LLPT,ULPT,LRPT,URPT,4,4,5,5);--4x5 REGION
STATIC COUNTER;
STATIC COUNTER;
SUBR;

MOVE: SUBR(X,Y); -- MOVE TO A POINT WITHIN A REGION
XMPT: NEW PT(X,Y,0,0);

XMPT DN: NEW PT(X,Y,-100,0);
XMOVE(REG1,XMPT);
XMOVE(REG1,XMPT_DN);
END; -- END MOVE SUBR

*** BEGINNING OF PROGRAM ***
SETC(CTR1,0);
SETC(CTR2,0);

LOOP1: TESTC(CTR1,6,NEXT1);
MOVE(CTR1,CTR2);
INCR(CTR1);
BRANCH(LOOP1);

NEXT1: TESTC(CTR2,4,NEXT2);
SETC(CTR1,0);
INCR(CTR2);
BRANCH(LOOP1);

END;

INITIALIZE COUNTERS
THAT ARE THE REGION MOVE POINTS
END OF ROW ?
MOVE TO POINT IN REGION

LAST COLUMN ?
RESET ROW COUNTER
INCREMENT COLUMN COUNTER •

A-78 58X7338

RELEASE

AML/Entry Command

Format: RELEASE;

Manipulators: This command is applicable to all systems that use
AML/Entry Version 4.

Purpose:

Remarks:

Example:

This instruction opens the digital output point 2 (DO
2). In an unmodified system, the air supplied to a
gripper or other device attached to Z-axis shaft, is
controlled by DO 2.

A delay may be required after this statement to allow
the mechanical motion of opening the gripper to
complete.

This example uses the RELEASE command to allow the
gripper to drop off the part it picked up.

1 PICKUP: SUBR; --SUBROUTINE TO PICKUP PART
2 PMOVE(PT(250,300,0,0)); --MOVE TO PART BIN
3 ZMOVE(-250);
4 GRASP; --PICKUP PART
5 DELAY(1); --DELAY TO ALLOW GRIPPER TO CLOSE
6 ZMOVE(0);
7 PMOVE(PT(400,-300,0,0)); --DROPOFF POINT
8 ZMOVE(-250);
9 RELEASE; --DROPOFF PART

10 DELAY(2);--DELAY TO ALLOW GRIPPER TO RELEASE
11 ZMOVE(0);
12 END;

Appendix A. Command/Keyword Reference A-79

RENAME

Primary Edit Command

Format: RENAME devicename:filename.filetype filename.filetype

Purpose: This primary command renames a file.

Remarks: The device name precedes the file name and they are both
separated from the file name by a colon. You do not need a
device name if the file is located on the diskette in the
default drive.

If the file to be renamed is in the editor, the RENAME
command renames the copy located on the diskette; the copy
in the editor is considered to have the old name. To
prevent the editor copy of the file being saved under the
old name on the diskette also, use the CANCEL command when
you exit the editing session.

Rules for naming files are as follows:

• Maximum name length is eight characters.

• No special characters can be used for the first
character of the name.

• The filetype must be specified; it does not default to
.AML.

Example: The following example changes file "EXAMPLELAML" to
"EXAMPLE2.AML".

RENAME EXAMPLE1.AML EXAMPLE2.AML

A -80 58X7338

RIGHT• AML/Entry Command

Format: RIGHT;

Manipulators: This command is only applicable to the 7545-800S
manufacturing system.

Switches the manipulator to right mode.

The 7545-800S is a symmetric arm manipulator, thus there
are points that can be reached in two different ways (in
either left or right mode). There are also points that
can only be reached in left mode or only in right mode.
The RIGHT command specifies that all subsequent motion
commands (i.e. PMOVE, DPMOVE, GETPART, XMOVE, ZMOVE)
will be performed in right mode. If a point is
specified that can only be reached in left mode, then a
data error (point out of workspace) occurs.

Purpose:

Remarks:

Example: The point PT1 in the
reached in left mode,
When the 7545-800S is
right mode. After the
be given to switch the

following example can only be
the point PT2 only in right mode.
returned home, it is placed in
move to PT1, a RIGHT command must
manipulator to right mode.

COMMAND INPUT -->

1 DEMO:SUBR;
2 PT1:NEW PT(500,-500,0,0);
3 PT2:NEW PT(-500,-500,0,0);
4 LEFT;
5 PMOVE(PT1);
6 RIGHT;
7 PMOVE(PT2);
5 END;

Appendix A. Command/Keyword Reference A-81

SAVE

Primary Edit Command

Format: SAVE devicename:filename.filetype

Purpose: This primary command saves the program in the editor onto a
diskette.

Remarks: A program that does not have a name is named when you use
this command. A name may be entered for a program without a
name when you enter the command or when ENTER FILESPEC
--> is displayed. After the SAVE command has executed, the
program name appears in the top left corner of the editor
screen.

When a name is displayed in the top left corner of the
screen, you do not have to enter the name to save it.
Subsequent save commands use the name provided unless a new
name is provided after the SAVE command.

When using the AML/Entry menu, you must specify the device
name preceding the filename if the program is not saved on
the same diskette as the editor.

The SAVE command does not warn you if you are saving the
current file into a file that already exists. Care must be
taken to not accidently overwrite another file.

A -82 58X7338

SETC

•
AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

SETC(counter_name,expression);

This command is applicable to all systems that use
AML/Entry Version 4.

This command sets the named counter to a specified
value.

Counters can hold either real or integer values. The
range of counters is approximately from -9.2E18 to
9.2E18. To assign an integer value to a counter, an
integer constant is used for the value. To assign a
real value to a counter, a real constant (one with a
fractional portion) is used for the value. See
"Expressions "

on page 4-48 for a discussion of
expressions.

Note: If this command is used within the ITERATE
command, then the value cannot be an expression. In
this case, the value must be a constant or a counter.

The name can be a formal parameter; if it is, the SETC
command does not change the value of the calling
argument.

Example: ZHEIGHT in the example is a global counter used to keep
track of the height of a current part in a vertical
pallet. In this application, the manipulator will move
to the pallet, go to the proper height, grasp a part,
and drop it off at home. Parts in the pallet reside at
heights -240, -220, -200,...,-20. The expression on
line 6 is used to add 20 to the height each time through
the loop.

Appendix A. Command/Keyword Reference A-83

--INITIALIZE PALLET
--MOVE TO PALLET
--GO TO PROPER HEIGHT
--NEXT LOCATION
--TURN LINEAR ON
--GO TO MAGAZINE
--GRAB PART
--LEAVE MAGAZINE
--TURN LINEAR OFF
--MOVE HOME
--RELEASE PART
--GO UNTIL TOP

COMMAND INPUT -->

1 ZHEIGHT:STATIC COUNTER;
2 MAIN:SUBR;
3 SETC(ZHEIGHT,-240);
4 MORE:PMOVE(PT(-300,300,0,0));
5 ZMOVE(ZHEIGHT);
6 SETC(ZHEIGHT,ZHEIGHT+20);
7 LINEAR(1);
8 DPMOVE(<30,0,0,0>);
9 GRASP; DELAY(1);

10 DPMOVE(<-30,0,0,0>);
11 LINEAR(0);
12 PMOVE(PT(650,0,0,0));
13 RELEASE; DELAY(1);
14 COMPC(ZHEIGHT<O,MORE);
15 END;

SETPART

AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

SETPART(name,value);

This command is applicable to all systems that use
AML/Entry Version 4.

This palletizing command sets the specified pallet's
current part to a specified value.

Each time the program executes the SETPART statement,
the statement sets the value in the current part counter
to the number in the SETPART statement. Refer to
"Pallet" in this appendix for details.

The pallet name used in the SETPART command can be
passed to the command as a formal parameter, but since
parameters are passed by value, the set part number is
only affected in the subroutine that is called. The
part number of the calling subroutine is not set.

Initially, the controller assumes the pallet part number
is zero. This is why a SETPART command must be issued
before any other palletizing statements.

The value can be an integer constant, formal parameter,
or counter. A formal parameter or counter must contain
an integer value, otherwise the manipulator may move to
the wrong point.

Other palletizing statements are:

• name:STATIC PALLET(ll,lr,ur,ppr,parts);

• GETPART(name);

• PREVPART(name);

• NEXTPART(name);

• TESTP(name,value,label);

Appendix A. Command/Keyword Reference A-85

Example: In the following pallet example, the pallet location
declaration is contained in lines 1 through 3. The
number of parts per row is 8 and the total number of
parts is 32. The STATIC PALLET uses all the above
information as shown in the example. The counter is set
the first time the program executes after being loaded
in the controller. This is accomplished by testing for
the controller initialized to 0 in the counter. If the 0
is present, the program executes line 10 to set the
counter to 1. The move to the current part position is
accomplished in line 11. Line 15 increments the current
part number. Line 16 tests to see the current part has
not yet been reset to 1. If so, the program branches to
the label "LOOP."

COMMAND INPUT -->

1 LL:NEW PT(300,200,0,0);
2 LR:NEW PT(300,300,0,0);
3 UR:NEW PT(500,300,0,0);
4 PPR:NEW 8; --PARTS PER ROW
5 PARTS:NEW 32; --TOTAL NUMBER OF PARTS
6 POINTS:STATIC PALLET(LL,LR,UR,PPR,PARTS);
7 MAIN:SUBR;
8 TESTP(POINTS,O,SET); --FIRST TIME ONLY
9 BRANCH(LOOP); --BRANCH WHEN NOT ZERO

10 SET:SETPART(POINTS,1); --SET COUNTER
11 LOOP:GETPART(POINTS); --MOVE TO PART
12 ZMOVE(-250); GRASP; DELAY(1); ZMOVE(0);
13 PMOVE(PT(250,300,0,0));
14 DOWN;RELEASE;UP;
15 NEXTPART(POINTS); --CHANGE COUNTER
16 COMPC(TESTP(POINTS)<>1,LOOP); --TEST COUNTER
17 DONE:WAIT(16,1,0); --WAIT FOR INPUT
18 END;

A-86 58X7338

AML/Entry Arithmetic Function

Format: SIN(expression)

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This arithmetic function returns the sine of an
expression.

Remarks: This function is useful for making the manipulator move
in a circle. A circle is described by the following
parametric equations:

X=X0 + R*COS(THETA)
Y=YO + R*SIN(THETA)

The center of the circle is at (X0,Y0), the radius is R,
and THETA is a parameter that traces a circle as it is
varied from 0 to 360 degrees. See "Expressions" on
page 4-48 for a discussion of expressions.

Examples:

SIN(0) = 0
SIN(45) = SQRT(2)/2
SIN(-90) =

SIN

•

Appendix A. Command/Keyword Reference A-87

SQRT

AML/Entry Arithmetic Function

Format: SQRT(expression)

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

This arithmetic function returns the positive square
root of an expression. The square root of a number is
defined as that number which when multiplied by itself
returns the original number.

The SQRT of a negative expression will cause a run-time
AML/Entry error. If COMAID is used to perform a R 01
(read machine status), the return code will be Hex 33
(Square root of a negative number). The SQRT returns
the positive square root of its argument. See
"Expressions" on page 4-48 for a discussion of
expressions.

Examples:

SQRT(0)
SQRT(4)
SQRT(25)
SQRT(-10)
SQRT(-7*-7) =

0
2
5
AML/Entry Error
7

A -88 58X7338

STATIC

AML/Entry Keyword

Format: name:STATIC COUNTER;

name:STATIC PALLET(ll,lr,ur,ppr,parts);

name:STATIC REGION(11,u1,1r,ur,ls,rs,top,bot);

Purpose: This keyword reserves controller storage for a counter or a
pallet. When a variable is declared with the STATIC keyword
you are saying that variable does not lose its value, even
across power downs. When a variable is declared with the
keyword STATIC it has no initial value. The value you give
it may change during execution, but the last value it has is
retained if execution starts over for any reason.

Remarks: Refer to "Counter", "Pallet" and "Region" in this appendix
for more details about these data types.

Appendix A. Command/Keyword Reference A-89

SUBR

AML/Entry Keyword

Format: id:SUBR;

id: SUBR(parameter);

id:SUBR(parameterl,parameter2,...);

Purpose: This keyword identifies a subroutine. The ID is an
identifier used to call the subroutine. The parameter(s) is
used when you want to pass a variable from another part of
your program into the subroutine. If no formal parameter is
to be passed, the semicolon (;) is located after the term
SUBR.

Remarks: Each time you use a SUBR keyword, you must have an END
keyword as the last line of the subroutine. The SUBR
keyword must be on a line separate from other AML/Entry
statements.

Example 1: In the following example, the variable X is declared in
line 2 to be an aggregate of four numbers. Each time the
ITERATE statement calls the subroutine SLMOVE, a new value
for X is passed until all values have been used. Within
the subroutine SLMOVE, a new value of X is substituted each
time into line 4, and a move is executed in line 5. Line 6
contains the END keyword for the SLMOVE SUBR line. Line 7
calls the subroutine SLMOVE. Line 8 contains the END
keyword for line 1.

COMMAND INPUT -->

1 DEMO:SUBR;
2 X:NEW <500,400,300,200>;
3 SLMOVE:SUBR(X);
4 P:NEW PT(X,400,0,0);
5 PMOVE (P);
6 END;
7 ITERATE('SLMOVE',X);
8 END;

A -90 58X7338

Example 2: The following application program has a subroutine that
does not use parameters when it is called to execute. The
subroutine is identified as START. The program executes the
move to coordinates 650,0,0,0 one time, and the subroutine
START on line 2 is called by its name, located on line 7.
After the subroutine executes the move to the two points in
the subroutine, the program returns control to the next
line following the statement that called the subroutine
(line 8). Because line 8 is the end of the program, the
program returns to the first line and starts the sequence
over.

COMMAND INPUT -->

1 DEMO:SUBR;
2 START:SUBR;
3 PMOVE (PT(400,400,-50,180));
4 PMOVE (PT(400,400,-50,-180));
5 END;
6 PMOVE (PT(650,0,0,0));
7 START;
8 END;

Appendix A. Command/Keyword Reference A-91

AML/Entry Arithmetic Function

Format: TAN(expression)

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This arithmetic function returns the tangent of an
expression. The tangent of a number is defined as the
sine of the number divided by the cosine of the number.

Remarks: The TAN function may cause a data error (DE). Because
the tangent of a number is equal to the sine of the
number divided by the cosine of the number, whenever the
cosine of the number is 0 (or sufficiently close to 0),
a data error occurs. This happens when the number is a
multiple of 90 degrees (i.e. ... -270, -90, 90, 270

See "Expressions" on page 4-48 for a discussion
of expressions.

Examples:

TAN(0) = 0
TAN(45) = 1
TAN(-60) = -(SQRT(3)/2)/.5
TAN(450) = Data Error

TAN

A -92 58X7338

TESTC

AML/Entry Command

Example:

TESTC(expressionl,expression2,1abel);

This command is applicable to all systems that use
AML/Entry Version 4.

This command tests the first value with the second
value.

See "Expressions" on page 4-48 for a discussion of
expressions. If the expression are equal, then the
program branches to the program statement label.

Note: If this command is used within the ITERATE
command, then the values cannot be expressions. The
first value must be a counter and the second value must
be a constant or a counter.

CTR1 in the example is a counter to build 200 parts
before going to the next assembly process (which is not
shown). In this application, each time a starting
counter value is desired, DI 16 receives an input to set
the counter to 0. The program branches to line 6 of the
program if line 4 does not receive a DI 16 signal with a
value of 1.

COMMAND INPUT -->

1 CTR1:STATIC COUNTER;
2 START:SUBR;
3 SET:SUBR;
4 TESTI(16,0,NOCHANGE); --IS DI 16 ON
5 SETC(CTR1,0); --SET COUNTER TO ZERO
6 NOCHANGE: --BYPASS RESET
7 END;
8 SET; --CALL SET SUBROUTINE FOR COUNTER
9 PART1:

10 INCR(CTR1); --ADD 1 TO THE COUNTER
11 -- PARTS ASSEMBLE STATEMENTS
12 -- PARTS ASSEMBLE STATEMENTS
13 TESTC(CTR1,200,PART2); --TEST COUNT
14 BRANCH(PART1); --CONTINUE PART1
15 PART2: --ASSEMBLE PART2
16 --PART2 STATEMENTS
17 END;

Format:

Manipulators:

Purpose:

Remarks:

Appendix A. Command/Keyword Reference A-93

TESTI

AML/Entry Command and Arithmetic Function

Format (command): TESTI (digital_input_point , value, label) ;

Format (arithmetic function): TESTI(digital_input_point)

Manipulators: This command is applicable to all systems that use
AML/Entry Version 4.

Purpose: The command form checks a digital input point for an
open- or closed- switch condition. If the condition of
the DI is the same as the specified value in the
statement, a branch is made to a labeled statement. If
the condition at the DI point does not meet the
condition for a branch, the program executes the
statement that follows the TESTI statement. The
function returns either a 0 or 1, corresponding to an
open- or closed- switch condition. This value may then
be used in any AML/Entry expression.

Remarks: The TESTI statement can be used with any of the DI
points. Both the digital_input_point and the value can
be integer constants, formal parameters, or counters.
In the arithmetic function form, the digital_input_point
can even be a complex expression. See "Expressions" on
page 4-48 for a discussion of expressions. An
expression for digital_input_point should evaluate to an
integer. Any nonzero expression for value maps to a
closed- switch position, while a zero for value maps to
an open- switch position.

The arithmetic function form is more convenient, as it
allows expressions to be used to specify the port number
and the return value to be used in an expression. This
allows one to easily check if all of a group of digital
inputs are on or off.

•

•
A -94 58X7338

Example: The following example shows how the TESTI can be used to
test for certain conditions and then branch, if
required. If FEEDER1 is empty, then the controller
waits for it to be filled. After it is refilled, the
program continues. Digital inputs 5, 6, and 7 are all
connected to a different relay on the feeder. If any 2
of the three are on, then a part exists.

k.W.L************
1 TEST5:NEW 5; --DI POINT 5
2 FEEDER1:PMOVE(PT(400,400,0,180));
3 EMPTY: COMPC(TESTI(5)+TESTI(6)+TESTI(7)<=1,EMPTY);
4
5 MAIN:SUBR;
6 ZMOVE(-250);
7 GRASP;DELAY(1.0); --PICK PART
8 ZMOVE(0);
9
10 DROPOFF:PMOVE(PT(650,0,0,0));
11 ZMOVE(-250);
12 RELEASE;DELAY(3.0); --PLACE PART
13 ZMOVE(0);
14 END;

Remarks: In this example, the program loops to the label EMPTY as long
as two of the relays 5, 6, and 7 are open. As soon as two of
them become closed, the statement ZMOVE(-250) executes on the
next line (line 6).

Appendix A. Command/Keyword Reference A-95

TESTP

AML/Entry Command and Arithmetic Function

Format (command): TESTP (pal let_name , value , label) ;

Format (arithmetic function): TESTP(pallet_name)

Manipulators: This command is applicable to all systems that use
AML/Entry Version 4.

Purpose:

Remarks:

Example:

The command form compares the current part of the pallet
pallet_name to the given value. If the value matches,
the program branches to the statement label. If the
value does not match, the program executes the next
statement. The name in the statement is the name used
in the STATIC statement for the pallet. The
arithmetic function form returns the current part number
of pallet_name, which may be used in an AML/Entry
Expression. See "Expressions" on page 4-48 for a
discussion of expressions.

In general, the arithmetic function form should be
preferred over the command form. This is because the
arithmetic function form can be used in expressions and
the COMPC command.

In addition to the TESTP command, other pallet control
statements are:

• GETPART(name);

• NEXTPART(name);

• PREVPART(name);

• SETPART(name,value);

In thethe following pallet example,

parts
information, as shown in the example. The counter for
the pallet is set in line 8. The move to the current
part position is done in line 9. Line 13 increments the
current part number. Line 14 test to see if the current
part number is not equal to 1. If so, the program
branches to the label "LOOP."

declaration is contained in lines 1
number of parts per row is 8 and the

is 32. The STATIC PALLET

pallet location
through 3. The
total number of

uses all the above

A -96 58X7338

COMMAND INPUT -->

1 LL:NEW PT(300,200,0,0);
2 LR:NEW PT(300,300,0,0);
3 UR:NEW PT(500,300,0,0);
4 PPR:NEW 8; --PARTS PER ROW
5 PARTS:NEW 32; --NUMBER OF PARTS
6 POINTS:STATIC PALLET(LL,LR,UR,PPR,PARTS);
7 MAIN:SUBR;
8 SETPART(POINTS,1); --SET COUNTER
9 LOOP:GETPART(POINTS); --MOVE TO PART

10 ZMOVE(-250); GRASP; DELAY(1); ZMOVE(0);
11 PMOVE(PT(250,300,0));
12 ZMOVE(-250); RELEASE; DELAY(1); ZMOVE(0);
13 NEXTPART(POINTS); --CHANGE COUNTER
14 COMPC(TESTP(POINTS)<>1,LOOP);--TEST COUNTER
15 DONE:WAIT(16,1,0); --WAIT FOR INPUT
16 END;

Appendix A. Command/Keyword Reference A-97

TRUNC

AML/Entry Arithmetic Function

Format:

Manipulators:

Purpose:

Remarks:

TRUNC(expression)

This command is applicable to all systems using
AML/Entry Version 4.

This arithmetic function returns the integer that is
less than or equal to the given expression. The
expression is "rounded downwards". Thus if the
expression is positive, the fractional portion may be
"thrown away". If the expression is negative, the
fractional portion is "thrown away", but the integer
portion is decremented by 1.

It is possible to "round-off" a number by taking the
TRUNC of the number + 0.5. This will "round-up" if the
fractional portion is greater than or equal to 0.5, and
"round-down" if the fractional portion is less than 0.5.
See "Expressions" on page 4-48 for a discussion of
expressions.

Examples:

TRUNC(0) = 0
TRUNC(1.499) = 1
TRUNC(1.501) = 1
TRUNC(7.9) 7
TRUNC(-0.1) -1
TRUNC(-7.6) = -8
TRUNC(1.499+0.5) = 1 --Note how 1.499 is rounded
TRUNC(1.501+0.5) = 2 --Note how 1.501 is rounded

A-98 58X7338

WAIT'

AML/Entry Command

Format: WAITI(digital_input_port,value,time_limit,[label]);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose:

Remarks:

Example:

This command allows you to respond to device time-out,
rather than have the controller generate an OT
(overtime) error.

WAITI is designed to optimize throughput in an
application that employs devices with time-limited
behavior (such as grippers and feeders).

If the digital input (DI) point does not attain the
specified value within the time-limit, control branches
to the specified label. If the digital input (DI) point
attains the specified value within the time limit,
control falls through and the next instruction is
executed. A time_limit of 0 tells the controller to
wait forever for the DI to attain the specified value.
That is, control will never branch to the optional label
or an OT will never occur.

A label parameter may be used, but it is optional. If
the label field is empty, the command continues to
operate.

An example of a WAITI command is shown below in a
program fragment.

GRIPPER : NEW 2; -- the gripper close DO point
GRIPPER_CLOSED : NEW 1; -- the gripper closed feedback point
PROBLEM : NEW 3; -- the problem light

MAIN: SUBR;
TRY: WRITEO(GRIPPER,1); -- close the gripper

WAITI(GRIPPER_CLOSED,1,1 .5,ERR); -- wait for the feedback
BRANCH(OK);

ERR:
WRITEO(PROBLEM,1); -- report problem
DELAY(3);
BRANCH(TRY); -- retry the gripper

OK: -- continue program execution
END;

Appendix A. Command/Keyword Reference A-99

WHERE

AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

WHERE(pointname);

This command is applicable to all systems using
AML/Entry Version 4.

This command allows you to update a point definition,
based on the current X, Y, Z, and Roll position of the
arm.

The point must not contain any counters or formal
parameters, otherwise the values returned from the WHERE
command may be overwritten the next time the subroutine
is invoked.

Example: An example of a WHERE command is shown below.

MAIN: SUBR;
CARD POINT: NEW PT(0,450,0,0);
CARD POINT2:NEW PT(0,350,0,0);
STOP POINT: NEW 5;. -- the DI point to guard
NEW PLACE: NEW PT(0,0,0,0);

PMOVE(CARD_POINT); -- move to the start point
GUARDI(STOP_POINTO.): -- guard for the stop point
PAYLOAD(ll);
LINEAR(1);
PMOVE(CARD_POINT2); - - move to the new point
COMPC(MSTATUSO<>0,HERE);- - if stopped by guard

- send point to host
NOGUARD; - - disable motion guard
LINEAR(5);
PAYLOAD(5);
BRANCH(EN);

HERE: WHERE(NEW PLACE); -- read the stop location
PUT(NEW PLACE); -- send location to host

EN: -- the remainder of the program
END;

A-100 58X7338

AML/Entry Command

Format: WRITEO(digital output point,value);

Manipulators: This command is applicable to all systems that use
AML/Entry Version 4.

Purpose: This instruction controls a digital output point (DO)
relay.

Remarks: There is a relay for each of the digital output points.
You can specify the relay by using the DO point number
in the statement. You can also name the DO point using
the NEW keyword in a statement and then using the name
in the WRITEO statement.

Once the command is given to open or close a DO relay,
the relay remains in that state until the command to
that DO point changes its state. The following are
program fragments of each case.

FEEDER1:NEW 5; --LABEL 5
WRITEO(FEEDER1,1); --WRITE POINT 5
WRITE0(8,0); --WRITE POINT 8

WRITEO•

You can specify a zero value to open a DO relay, and .a
nonzero to close DO relay. In the example above, DO
point 5 relay is to close. DO point 8 relay is to open.

Appendix A. Command/Keyword Reference A-101

XMOVE

AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

XMOVE(region_name,region_point);

This command is applicable to all systems using
AML/Entry Version 4.

This command allows you to perform moves to a calculated
point within a region.

The point is in respect to region coordinates, not
manipulator coordinates. The roll values of the LL,
UL, LR, and UR points of the region are ignored. The
roll orientation is determined by the line drawn from
the LL point to the LR point. A positive roll value in
region_name corresponds to a counterclockwise rotation
from this line. A negative roll value in region_name
corresponds to a clockwise rotation from this line.

Example: An example of an XMOVE command follows.

A - 102 58X7338

LLPT: NEW PT(0,350,0,0);
LRPT: NEW PT(100,350,0,0);
ULPT: NEW PT(0,550,0,0,0);
URPT: NEW PT(100,550,0,0);
REG1: STATIC REGION(LLPT,ULPT,LRPT,URPT,4,4,5,5);--4x5 REGION
CTR1:STATIC COUNTER;
CTR2:STATIC COUNTER;
MAIN: SUBR;

MOVE: SUBR(X,Y);
XMPT: NEW PT(X,Y,0,0);

XMPT_DN: NEW PT(X,Y,-100,0);
XMOVE(REG1,XMPT);
XMOVE(REG1,XMPT_DN);
END;

*** BEGINNING OF PROGRAM ***
SETC(CTR1,0);
SETC(CTR2,0);

LOOP1: TESTC(CTR1,6,NEXT1);
MOVE(CTR1,CTR2);
INCR(CTR1);
BRANCH(LOOP1);

NEXT1: TESTC(CTR2,4,NEXT2);
SETC(CTR1,0);
INCR(CTR2);
BRANCH(LOOP1);

NEXT2:
END;

-- MOVE TO A POINT WITHIN A REGION

-- END MOVE SUBR

-- INITIALIZE COUNTERS
-- THAT ARE THE REGION MOVE POINTS
-- END OF ROW ?
-- MOVE TO POINT IN REGION

-- LAST COLUMN ?
-- RESET ROW COUNTER
-- INCREMENT COLUMN COUNTER

Appendix A. Command/Keyword Reference A-103

ZMOVE

AML/Entry Command

Format: ZMOVE(position);

Manipulators: This command is applicable to all systems using
AML/Entry Version 4.

Purpose: This command is used to perform absolute Z-axis
movement. In millimeters the range is between 0 mm
(fully retracted) and -250 mm (fully extended). In
inches the range is between 0 in (fully retracted) and
-9.8 in (fully extended). This command has no time
limit to reach its specified goal.

The position can be a simple constant or complex
expression. See "Expressions" on page 4-48 for a
discussion of expressions.

Note: If this command is used within the ITERATE
command, then the position cannot be an expression. The
position must be a constant, formal parameter, or
counter.

Example: This example uses the ZMOVE command to allow the gripper
to pick up a part.

1 PICKUP: SUBR; --SUBROUTINE TO PICKUP PART
2 PMOVE(PT(250,300,0,0)); --MOVE TO PART BIN
3 ZMOVE(-150);
4 GRASP; --PICKUP PART
5 DELAY(1); --DELAY TO ALLOW GRIPPER TO CLOSE
6 ZMOVE(0);
7 END;

A- 104 58X7338

ZONE

AML/Entry Command

Format:

Manipulators:

Purpose:

Remarks:

ZONE(value);

This command is applicable to all systems that use
AML/Entry Version 4. However, reduction in settle time
varies between machine types.

This command changes the settle at a goal or defaults
control to the zone switches in the controller. The
amount of settle affects the precision of locating a
goal and it affects the throughput. There is trade-off
between the precision and the time required to execute
program statements.

The value for zone ranges from 1, for a long settle, to
15, for the minimum settle. A higher value in the ZONE
command shortens the time that the manipulator takes in
finding your desired points. It also lessens the
exactness in those points. You give up a degree of
accuracy to improve speed and time.

A 0 (zero) specifies that the switch settings are used.
There is no program value equivalent to the switches
when they are all in the off position, but if you have
all the switches in the off position and specify a
ZONE(0);, you get maximum accuracy in the manipulator's
arm movement.

The following conditions automatically change a
programmed zone setting:

• The controller reached the last END statement in
the program and defaults to the zone switch settings
in the controller

• A different zone statement was encountered in the
program

Appendix A. Command/Keyword Reference A-105

To maintain a certain settle the ZONE statement must
precede the first PMOVE statement in the program.
This prevents an automatic default each time the program
cycles to the beginning statements. In addition,
consider resetting the zone as needed after you complete
a linear move.

Example: This example shows how different values in the ZONE
command affect simple movement.

COMMAND INPUT -->

1 DEMO:SUBR;
4 START:SUBR;
5 ZONE(15); -- SHORT SETTLE
6 PMOVE (PT(400,400 ,0,180));
7 ZONE(0); -- USE ZONE SWITCHES
8 PMOVE (PT(300,300 ,-50,-180));
9 END;
2 ZONE(1); -- LONG SETTLE TIME
3 PMOVE (PT(500,300 ,-100,0));

10 START;
11 END;

A-106 58X7338

Primary Edit Command

Format:

Purpose: This primary command recalls the last primary command to the
command input line.

Appendix A. Command/Keyword Reference A-107

Compiler Directive

Format:

Purpose: AML/Entry allows you to Include a file. Using the
--%Include command, a file will cause additional files to be
read by the compiler. The Included files' lines are
included in the output (.ASC) and the listing (.LST) file.

Remarks. The --%I designates an Include function. (Both upper and
lower case I can be used.) Nested Include files and
embedded blanks are not allowed. The filespec of the
Included file must contain the file's extension because the
compiler will not assume the extension to be .AML. A path
name may not be given with the filespec, but a drive may be
given. If a drive is specified, then the included file must
reside on the designated drive. If no drive is specified,
then the drive that contains the source file is used as the
default.

An "Including file" message is issued whenever a file is
included. The lines of the Included file are identified in
the .LST file by a % sign following the line address
indicator.

Example: An example of the Include compiler directive is shown below.
The example shows two lines of code that are included in the
subroutine MAIN by the command --WA: DATA.AML'.

****MAIN.AML file**

MAIN: SUBR;
--%I'A: DATE.AML'
PMOVE PT1;
PMOVE PT2;
END;

****MAIN.LST file****

MAIN: SUBR;
DATA.AML'

%PT1:NEW PT(650,0,0,0);
%PT2:NEW PT(0,550,0,0);
PMOVE PT1;
PMOVE PT2;
END;

****DATA.AML file****

PT1:NEW PT(650,0,0,0);
PT2:NEW PT(0,550,0,0);

A - 108 58X7338

Compiler Directive

Format: --%P

Purpose: The Page compiler directive causes a page break in the
listing file. It allows you to control the paging within
the listing file.

Appendix A. Command/Keyword Reference A-109

A-110 58X7338

APPENDIX B. AML/ENTRY MESSAGES

This appendix contains an alphabetic-order list of all messages that do
not have a message number and a numeric-order list of all error messages
that contain error numbers.

Error messages can be the result of working with a file in an edit
session, or attempting to transmit a program to the controller. In
AML/Entry, the computer attempts to inform you where the error occurred.
AML/Entry run-time error messages are described in
Chapter 8, "Communications." Information on error messages encountered
when you are using DOS is provided in DOS documentation.

MESSAGES WITHOUT NUMBERS

A, R, or I PLEASE

Cause: In response to an Abort, Retry, or Ignore question, an input
other than A, R, or I was entered.

Recovery: Input A, R, or I and press the enter key.

Component: Compiler

ABORT LOAD? (y or n)

Cause: This message appears when an empty filename is entered, an
empty partition number is entered, or the requested filename is not
found for a download operation. Rather than aborting the load request
all together, this allows the operation to be retried with a new
filename or partition number.

Recovery: If the operation is to be retried, select option "n". If the
load is to be aborted, select option "y".

Component: Comaid

•

Appendix B. AML/Entry Messages B-1

ABORT(A), RETRY(R), or IGNORE(I)

Cause: This is a normal message following an operations error, such as
the printer not available. The Abort option, specified by entering the
single letter A, cancels the compiler; the Retry option, specified by
entering the single letter R, retries the operation (after the problem
has been fixed); the Ignore option, specified by entering the single
letter I, ignores the current operation, but continues with the compile.

Recovery: Enter the correct response and press the enter key.

Component: Compiler

xxxx ALREADY EXISTS

Cause: A rename command specified a new file name for a file, but the
new name has already been used for another file on the diskette.

Recovery: You should rename the file to an unused name on the diskette.

Component: Editor

ATTENTION!!!
THE ROBOT IS ABOUT TO GO HOME. IF THE SHAFT IS EXTENDED IT
MAY COLLIDE WITH FIXTURES IN YOUR WORKSPACE. PRESS Q TO
ABORT TEACH OR ANY OTHER KEY TO CONTINUE.

Cause: This message appears whenever Teach mode is entered for the
first time or after a communications error. The robot must first move
home in order to zero its encoders.

Recovery: First move the Z axis up by using the control panel if the . Z
axis is extended. Then press any key to enter Teach mode and cause the
robot to move home or a Q to abort Teach mode.

Component: Editor

•

•

• BAD FILE NAME

Cause: An improper file name was used.

Recovery: Rename the file using these rules.

• Only A, B, C (fixed disk drive), and D (fixed disk drive) may be
used as a device name.

• The file name must be less than eight characters and not contain
illegal characters.

Component: Editor

CAN NOT FIND FILE

Cause: One of the files needed by the configuration utility is missing.

Recovery: Ensure the correct diskettes are in the diskette drive.

Component: Configuration utility

CAN NOT OPEN .ASC FILE

Cause: The compiler can not open the output .ASC file.

Recovery: Ensure the diskette used to store the output file has enough
space to record another file.

Component: Compiler

Appendix B. AML/Entry Messages B-3

CAN NOT OPEN INCLUDE FILE: filespec

Cause: This message is produced when the Include command is
encountered, but the specified file (filespec) can not be opened.

Recovery: Make sure the file to be included is on the device specified.
Also make sure that the file CONFIG.SYS contained in your root directory
contains the line "FILES=12". This is done automatically by the
Autoinit procedure.

Component: Compiler

CAN NOT OPEN .LST FILE

Cause: The compiler can not open the listing .LST file.

Recovery: Ensure the diskette used to store the output file has enough
space to record another file.

Component: Compiler

CAN NOT OPEN .SYM FILE

Cause: The compiler can not open the symbol table .SYM file.

Recovery: Ensure the diskette used to store the symbol table has enough
space to record another file.

Component: Compiler

CAN NOT TEACH

Cause: The editor is unable to enter teach mode because the manipulator
is in a condition that does not allow it to enter teach mode.

Recovery: Ensure that there are no errors present at the manipulator,
and that the manipulator is not running an application program.

Component: Editor

•

B-4 58X7338

CHECK THAT CONTROLLER IS ON-LINE AND CABLE IS ATTACHED. ABORT
TEACH? (y[yes], n[no], i[ignore])

Cause: This message occurs when the editor is unable to establish
communications between the Personal Computer and the controller.

Recovery: Choose option "y" to return to the editor, option "n" to
retry establishing communications, or option "i" to enter a simulated
version of teach.

Component: Editor

COMMAND FILE TERMINATED BY ERROR

Cause: This message appears when one of the lines in a Comaid command
file caused an error. The error could be because of an invalid command
line or a communications error from the controller. In either case,
processing of the command file is terminated.

Recovery: None necessary.

Component: Comaid

COMMAND PENDING

Cause: Only one part of a line command that uses two parts has been
input. This message occurs whenever you must scroll forward or backward
to enter paired line command(s). The line commands listed here are used
together:

C used with A or B
CC used with CC and A or B
DD used with DD
M used with A or B
MM used with MM and A or B

If you enter pairs of commands that do not fit on one screen this
message is normal.

Recovery: You may clear the condition by pressing function key F3 and
typing in all the required commands. You can also enter the remaining
command on the desired line and press the enter key. This allows the
command to complete.

Component: Editor

Appendix B. AML/Entry Messages B-5

COMMUNICATIONS ERROR

Cause: The Personal Computer has encountered an error when it tried to
communicate with the controller. This error occurs during program
loading and teach functions.

Recovery: Ensure that the communications cable is attached between the
controller and the Personal Computer, and the "On Line" LED is on at the
controller. If the TE LED on the control panel is lit, press the Reset
key.

Component: Editor

COMPILATION ABORTED/ABNORMAL TERMINATION

Cause: A severe program error occurred causing the compiler to
terminate. This message also occurs with the Write Protect Violation,
Drive Not Ready, and the Device Full messages.

Recovery: Correct the program error and retry the compiler. Ensure the
diskette containing the compiler is not removed from the drive after the
compiler is loaded.

Component: Compiler

COMPILATION TERMINATED

Cause: Due to one of the following reasons the compiler has terminated
operation:

An Abort was entered.
Errors were encountered in the program that did not
allow the compiler to continue.

A disk error occurred while compiling.

Recovery: Correct the error and compile the program again.

Component: Compiler

•

•

• CONFIGURED CONTROLLER IS INCOMPATIBLE WITH THIS VERSION OF
EDIT/TEACH

Cause: This message is displayed if the machine type in the
configuration file is not to be used with this version of the Editor.

Recovery: Reconfigure using Version 4.

Component: Editor

CONFIGURED MACHINE TYPE IS INVALID FOR THIS COMPILER.

Cause: This message is displayed if the machine type in the
configuration file is not to be used with this compiler.

Recovery: Make sure that the files supplied with Versions 3 and 4 are
not mixed.

Component: Compiler

CONVERTING AML/E PROGRAM

Cause: This is a normal message indicating the progress of the
compilation process. This message tells you that the second of three
steps for the compiler is executing.

Recovery: None necessary.

Component: Compiler

CREATING PROGRAM FOR MACHINE TYPE 7545

Cause: This message is displayed if the configuration is set for this
machine type.

Recovery: None necessary.

Component: Compiler

Appendix B. AML/Entry Messages B-7

CREATING PROGRAM FOR MACHINE TYPE 7545-S

Cause: This message is displayed if the configuration is set for this
machine type.

Recovery: None necessary.

Component: Compiler

CREATING PROGRAM FOR MACHINE TYPE 7547

Cause: This message is displayed if the configuration is set for this
machine type.

Recovery: None necessary.

Component: Compiler

CURRENT ROBOT CONFIGURATION - LEFT or RIGHT

Cause: This appears at the top of the Teach screen if the AML/E system
is configured for a 7545-800S. It indicates the current arm
configuration (left or right).

Recovery; None necessary..

Component: Editor

CURRENTLY PRINTING

Cause: This message is, displayed while a file is being printed.

Recovery: None necessary.

Component: Editor

B-8. 58X7338

DATA DRIVE MODE EXITED

Cause: This message appears after the Xoff has been sent to the
controller to exit data drive mode. If a data drive request has been
received, then it too is printed.

Recovery: None necessary.

Component: Comaid

DESTINATION PARTITION

Cause: Comaid is requesting the number of the partition in the
controller (1-5) that is to receive the output file.

Recovery: Type in the correct partition number and press the enter key.

Component: Comaid

DEVICE FULL

Cause: The compiler attempted to create a file, or write to a file, on
a disk device that ran out of room.

Recovery: Use a diskette with enough space to hold the file or erase
files from the existing diskette to make room for the file.

Component: Compiler

AML/Entry Messages B-9

DISK ERROR

Cause: A read/write error occurred when the compiler tried to use the
diskette drive.

Recovery: Retry the operation. If the error reoccurs, try the
operation using a different diskette that has been properly formatted.
If the error still occurs, check the Personal Computer operation.

Component: Compiler

DISK FULL

Cause: An attempt was made to write or load a file that required more
space than was available on the diskette.

Recovery: Erase files from the diskette until there is enough space for
the file or use another diskette.

Component: Configuration utility, Editor

•

DISK IS WRITE PROTECTED

Cause: You attempted to write data on a diskette with the write protect
notch covered.

Recovery: Remove the tab covering the write protect notch and retry the
operation, or use a diskette that is not write-protected.

Component: Configuration utility, Editor

•
B-10

DISK I/O ERROR

Cause: The Personal Computer had an error when reading or writing to
the diskette.

Recovery: Retry the operation. If the error reoccurs retry the
operation using a different diskette that has been properly formatted.
If the error still occurs, check the Personal Computer operation.

Component: Configuration utility, Editor, Menu

DISK NOT READY

Cause: The Personal Computer sensed that a diskette was not present
when it tried to read or write to a diskette drive.

Recovery: Ensure that the diskette is properly inserted in the correct
diskette drive. Ensure the door on the diskette drive is closed.

Component: Configuration utility, Editor

DO YOU WISH TO OVERWRITE?

Cause: This message occurs with the "TERMINATING EDITOR SESSION"
message during the F8 save operation if you enter the name of a file
that already exists.

Recovery: Enter Y or N.

Component: Editor

AML/Entry Messages B-11

DRIVE NOT READY

Cause: A diskette drive was not ready when the compiler tried to read
or write to it.

Recovery: Ensure that the diskette was installed in the correct
diskette drive. Ensure the door on the diskette drive is closed.

Component: Compiler

END OF COMMAND FILE REACHED

Cause: This message appears after the last line in a Comaid command
file has been processed.

Recovery: None necessary.

Component: Comaid

ENTER BREAKPOINT ADDRESS

Cause: This message prompts the user for the address where a breakpoint
will be set. The mapping of AML/Entry program lines to physical
addresses can be generated from the program listing created by the
AML/Entry Compiler.

Recovery: Enter the address where the breakpoint will be set. This
will cancel any previous breakpoint.

Component: Comaid

B-12

ENTER CHANGE COMMAND

Cause: The "Repeat Change" key F5 was used before an initial CHANGE
primary command was entered.

Recovery: Enter a CHANGE primary command then use the "Repeat" key.

Component: Editor

ENTER COMMAND FILE NAME

Cause: This message prompts the user for the name of a command file
that contains a list of Comaid commands, one per line.

Recovery: Enter the name of the command file. No default file
extension is assumed, thus enter the full file specification.

Component: Comaid

ENTER FILESPEC

Cause: The editor is prompting for a file to be edited (if entering the
editor) or the filename under which the current file should be saved (if
exiting the editor).

Recovery: Enter either the filename of the file to be loaded or the
filename under which the current file should be saved. Hitting enter
without giving a filename will return you back into the editor. Use the
CANCEL command to abort the editor.

Component: Editor

ENTER FIND COMMAND

Cause: The "Repeat Find" key F4 was used before an initial FIND
primary command was entered.

Recovery: Enter a FIND primary command then use the "Repeat" key.

Component: Editor

Appendix B. AML/Entry Messages B-13

ENTER NEW SOURCE FILE SPECIFICATION:

Cause: The file name given as the source file for the compiler is not
in the correct form.

Recovery: The source file must have a file extension of .AML. Enter
the file name again with the form: device:name.AML. If you do not
specify a file extension the compiler defaults to the .AML extension.

Component: Compiler

ENTER NUMBER OF VARIABLES

Cause: This message appears when Comaid needs to know the number of
variables that are to be read with the R 80 read command or the number
of variables that are to be sent with the C 80 control command.

Recovery: Enter the number of variables that are to be read or sent.

Component: Comaid

ENTER PARTITION NUMBER TO BE UNLOADED

Cause: This proepts the user for the partition number to be unloaded
for an unload operation.

Recovery: Enter the number 1, 2, 3, 4, or 5 to unload the respective
partition of the controller. If desired, "ALL" may be entered to cause
all 5 partitions to be unloaded.

Component: Comaid

ENTER "Q" TO QUIT, OR ANY OTHER KEY TO RETRY

Cause: If "Q" i$ pressed, the AML/Entry menu is displayed. Any other
key runs the configuration utility again.

Recovery: Press the desired key.

Component: Configuration utility

B-14 58X7338

• ENTER SOURCE FILE SPECIFICATION:

Cause: This is a normal message requesting the name of the input source
file for the compiler.

Recovery: Type in the name of the file to be compiled. The format of
the file specification is: device:name.AML. If you do not specify a
file extension the compiler defaults to the .AML extension.

Component: Compiler

ENTER STARTING VARIABLE

Cause: This message appears when Comaid needs to know the starting
variable to be used with the R 80 read command or the C 80 control
command.

Recovery: Enter the starting variable's number. This can be gotten
directly from the XREF program.

Component: Comaid

ENTER VALUE FOR VARIABLE NUMBER

Cause: This message appears when either the C 80 control command is
being performed or the user is preparing for a GET command.

Recovery: Enter the value for the variable that will be sent during the
control command or if a GET is received.

Component: Comaid

Appendix B. AML/Entry Messages B-15

ERROR IN DATA DRIVE MODE

Cause: This message appears after data drive mode has been exited and
an error has occurred. The cause of the error will be printed on the
line following this line.

Recovery: Take error recovery based on the cause of the error. Usually
this means sending the reset error (X 13) request.

Component: Comaid

ERROR IN INCLUDE FILE: INCLUDE ENCOUNTERED FOR FILE: filespec

Cause: This message is produced when the Include command is encountered
within an open include file. Nested Includes are not allowed.

Recovery: Remove nested Include file and re-compile.

Component: Compiler

ERROR ON DOWNLOADING

Cause: This message appears when an error has occurred during the
download operation. The line following this gives additional
information about the error.

Recovery: Retry the download operation if necessary.

Recovery: Comaid

ERROR ON LAST DATA DRIVE

Cause: Comaid will always print the last data drive request that was
received when data drive mode is exited. If the last request was
invalid, then this message is printed. This should never occur. If it
is repeatable, IBM should be contacted.

Recovery: None necessary.

Component: Comaid

•
B-16 58X7338

ERROR ON xxxx COMMAND

Cause: This message appears when an error occurs during a read,
execute, control, or teach command. The following line will contain
additional information about the error.

Recovery: Retry the operation if necessary. The controller may not be
able to accept the request due to its current state.

Component: Comaid

ERROR ON UNLOADING

Cause: This message appears when an error has occurred during the
unload operation. The line following this gives additional information
about the error.

Recovery: Retry the unload operation if necessary.

Recovery: Comaid

ERROR REPORT HARDCOPY?

Cause: This is a normal message from the compiler. If you answer "Y"
or "y" the error messages are printed on the printer and the screen. If
you give any other answer, the error messages are displayed on the
screen only.

Recovery: Type in the answer and press enter.

Component: Compiler

ERRORS:

Cause: This message gives the total number of errors encountered by the
compiler when it processed the AML source program.

Recovery: None necessary

Component: Compiler

Appendix B. AML/Entry Messages B-17

ERROR: AN UNRECOVERABLE INITIALIZATION ERROR HAS OCCURRED.

Cause: This message appears when Comaid cannot initialize its
variables. This message should never appear for a Personal Computer
with 192K memory.

Recovery: Retry calling Comaid.

Component: Comaid

ERROR: CANNOT FIND xxxx.TXT

Cause: This message appears if Comaid cannot find either MSGCOM.TXT or
MSGCOM2.TXT.

Recovery: Insert a diskette containing the missing file into one of the
diskette drives or copy the missing file into the current directory.

Component: Comaid

ERROR: COMMAND FILE NOT FOUND

Cause: This message appears when a specified command file cannot be
found by Comaid.

Recovery: Check that the filename was correctly entered, and conforms
with the DOS filespec naming conventions.

Component: Comaid

ERROR: INVALID COMAID COMMAND LINE

Cause: This message appears if a Comaid line in a command file contains
an error. This message will not appear if an invalid option is
selected, but will appear if an invalid operand or incorrect number of
operands appears.

Recovery: Correct the command line in the Comaid command file that
contains the error with the AML/Entry editor.

Component: Comaid

B-18 58X7338

• ERROR: INVALID OPTION IN COMMAND FILE

Cause: This message appears when an invalid option appears in a command
file. For example, recursive command file processing is not allowed, so
the F option is invalid in a Comaid command file.

Recovery: Remove the command line in the Comaid command file that
contains the erroneous request.

Component: Comaid

ERROR: INVALID OPTION ON DOS COMMAND LINE

Cause: This message appears when an invalid option appears on the DOS
command line. For example, the P request is not allowed on the DOS
command line.

Recovery: This usually happens when a typographical error occurs (e.g.,
the Z option is requested instead of the X option). See "COMAID" on
page 8-14 for a discussion of the Comaid options.

Component: Comaid

ERROR: xxxx.TXT HAS BEEN CHANGED.

Cause: This message appears when some of the lines have been deleted
from either MSGCOM.TXT or MSGCOM2.TXT. These files should never be
edited by the user.

Recovery: Get a new copy of the file that has been changed from either
a backup diskette or volume 2 of the AML/Entry ship diskettes.

Component: Comaid

Appendix B. AML/Entry Messages B-19

ERROR: STILL CANNOT OPEN COMM PORT, EXECUTION TERMINATED.

Cause: This message appears if communications still cannot be
established between the Personal Computer and the controller. The first
time communications cannot be established, the next error message is
printed.

Recovery: Once again, check that the cable is correctly attached, the
AML/Entry system is properly configured, and the controller is on-line.

Component: Comaid

ERROR: UNABLE TO OPEN COMMAND FILE

Cause: This message appears when the entered command file cannot be
opened.

Recovery: Retry the F option, making sure the file exists and is
correctly specified to Comaid.

Component: Comaid

ERROR: UNABLE TO OPEN PORT COMn: CHECK HARDWARE AND STRIKE
ANY KEY TO CONTINUE...

Cause: This message appears when Comaid is invoked and communications
cannot be established between the Personal Computer and the controller.

Recovery: Check to make sure that the communications cable is correctly
attached, the AML/Entry system is correctly configured for the correct
communications port (either COM1: or COM2:), and that the controller is
on-line.

Component: Comaid

•

•
B-20 58X7338

• EXTENSION MUST BE .AML

Cause: The compiler was given an input file that does not have an .AML
extension.

Recovery: Rename the input file with an .AML extension

Component: Compiler

FILE ALREADY EXISTS

Cause: This message occurs if you specify an already existing filename
in PUTFILE, or when you terminate the Editor session using F8 and the
file you are editing is a new file.

Recovery: Specify a different filename.

Component: Editor

FILE COPIED

Cause: This message is displayed when a GETFILE/PUTFILE has
successfully completed.

Recovery: None necessary

Component: Editor/Teach

FILENAME MISSING

Cause: This message occurs if GETFILE/PUTFILE is entered without
specifying a filename.

Recovery: Specify a filename when entering GETFILE/PUTFILE.

Component: Editor

Appendix B. AML/Entry Messages B-21

FILE NOT ACCESSIBLE

Cause: The file name supplied as the input file to the compiler can not
be found on the diskette.

Recovery: Ensure the correct diskette is in the diskette drive and that
you are using the correct file name.

Component: Compiler

FILE TOO LARGE

Cause: Your program is too large for the editor. Program size is
limited to 500 lines for Personal Computers with 192 KBytes of memory,
800 lines for Personal Computers with 256 KBytes.

Recovery: Consider combining logic into subroutines or placing multiple
statements on a line.

Component: Editor

FILE NOT FOUND

Cause: A file name was given which can not be found on the specified
drive.

Recovery: Ensure that the correct diskette is in the diskette drive.
Ensure that the correct drive was specified in the file name.

Component: Editor

FILENAME MUST HAVE .ASC EXTENSION

Cause: You tried to load a program to the controller that did not have
an .ASC extension.

Recovery: Ensure that the correct diskette is in the diskette drive.
Ensure that there were no errors when the program compiled.

Component: Comaid •
B-22 58X7338

• FILESPEC TOO LONG

Cause: The file name supplied as the input file to the compiler is more
than 14 characters long.

Recovery: Ensure the correct file name was entered. Rename the file
with a name less than 14 characters long.

Component: Compiler

GENERATE LISTING FILE (.LST)?

Cause: This is a normal message from the compiler. If you answer "Y"
or "y" the compiler generates a listing file containing the original AML
program and any error messages. Any other input is interpreted as a
"no" . If the file is created, it has the same name as the input file,
but the extension is .LST.

Recovery: Type in the answer and press the enter key.

Component: Compiler

GENERATE SYMBOL TABLE (.SYM)?

Cause: This is a normal message from the compiler. If you answer "Y"
or "y" , a symbol table is produced. It contains a map of the AML/Entry
program structure and a list of the variables in the program. Any other
input is interpreted as a "no." If the file is created, it has the same
name as the input file, but the extension is .SYM.

Recovery: Type in the answer and press the enter key.

Component: Compiler

Appendix B. AML/Entry Messages B-23

ILLEGAL FILESPEC GIVEN

Cause: A file name was used that does not follow the rules for naming
files.

Recovery: Ensure the file name has less than eight letters and no
special characters.

Component: Editor

ILLEGAL OP ON FIRST LINE

Cause: A line command was used on the first line of the file.

Recovery: You may have entered a D , M , C ,or R line command on line
number 1. This line can not be moved, deleted, copied, or repeated.

Component: Editpr

ILLEGAL OP ON LAST LINE

Cause: A line command was used on the last line of the file. This line
can not be moved, deleted, copied, or repeated.

Recovery: You Wly have entered a D , M , C ,or R line command on the
last line.

Component: EditOr

ILLEGAL VALUE ENTERED. REENTER.

Cause: This meseage appears when
offset or number of variables to be
controller via POT operations.

Recovery: Enter new values, making

Component: Comaid

the user enters either a negative
printed that were received from the

sure both are non-negative.

B-24 58X7338

•
I NCLUDING FILE: filespec

Cause: This message is produced during "Reading Input File" when an
Include command is encountered. It indicates that the compiler is now
reading from that include file.

Recovery: None necessary.

Component: Compiler

INPUT FILE IS EMPTY

Cause: This message is produced when an .AML file that is empty is
compiled.

Recovery: Check to make sure that the correct file was specified and
that it contains an AML/Entry program.

Component: Compiler

INSUFFICIENT MEMORY 192K IS MINIMUM

Cause: The IBM Personal Computer does not have enough memory.

Recovery: 192KBytes of IBM Personal Computer memory is the minimum
required for AML/Entry Version 4. Ensure the Personal Computer has the
correct configuration.

Component: Menu

INVALID CHANGE COMMAND

Cause: This message is produced by an improper format for the CHANGE
command.

Recovery: Re-enter command using correct format.

Component: Editor

Appendix B. AML/Entry Messages B-25

INVALID COLUMN SPEC.

Cause: You have used a number that is not within the range of 1 to 72
for column values as part of an F or C primary command.

Recovery: Specify a column between 1 and 72.

Component: Editor

INVALID HOME CALCULATION

Cause: This message occurs if upon entry into Teach from the Editor
using PF6, it was determined by Teach that the arm could not be homed
due to hardware Modifications.

Recovery: Contact your IBM representative.

Component: Editor/Teach

INVALID LINE COMMAND

Cause: An invalid line command has been entered in the line command
input field.

Recovery: Use the space bar and blank out the invalid command, then
press F3 (reset key).

Component: Editor

I NVALID PORT NUMBER

Cause: A digital output port outside of the allowed range for your
system has been specified.

Recovery: Change the port number to a number within the range for your
system, or press the End key to abort the DO control mode.

Component: Editor

B-26 58X7338

•
INVALID PRIMARY COMMAND

Cause: An incorrect command has been entered on the command input
field.

Recovery: Retype the command.

Component: Editor

LAST DATA DRIVE OPERATION WAS

Cause: As data drive requests are received from the controller, they
are printed on the screen. This informs the user what the most recent
data drive command is.

Recovery: None necessary.

Component: Comaid

LINE:

Cause: LINE is used to show the current line number of the AML program
being processed.

Recovery: None required

Component: Compiler

LINE COMMAND CONFLICT

Cause: Several conflicting line commands were entered at the same time.
For example, two A line commands are entered at the same time.

Recovery: Use the space bar to blank out the line commands and retype
the correct commands.

Component: Editor

Appendix B. AML/Entry Messages B-27

LINE NOT FOUND

Cause: A line was requested, using the L line command, which does not
exist in the file.

Recovery: Enter the correct line number.

Component: Editor

MANIPULATOR POWER IS OFF

Cause: The manipulator is unable to teach because Manip Power is off.

Recovery: Press the Manip Power button.

Component: EditOr

MESSAGE FILE xxxx HAS BEEN DAMAGED. GET A NEW COPY FROM YOUR
BACKUP DISKETTE.

Cause: This message occurs when one of the three message files,
MSGCMP.TXT, MSGZED2.TXT, or MSGCOM2.TXT has been altered by the user.

Recovery: When this happens, reload the file from a backup diskette or
the original AMI4Entry ship diskettes.

Component: Configuration Utility

NO DATA DRIVE PERFORMED

Cause: This message appears when data drive mode is exited and no data
drive request was received from the controller.

Recovery: None necessary.

Component: Comaid

B-28 58X7338

•
NO LINE(S) SPECIFIED

Cause: This message occurs when a GETFILE/PUTFILE is entered and C, CC,
A, or B have not been specified. message file.

Recovery: Specify C, CC, A, or B before entering GETFILE/PUTFILE.

Component: Editor

NOW DOWNLOADING

Cause: This message flashes on the screen as Comaid downloads a
program.

Recovery: None necessary.

Component: Comaid

NOW PERFORMING:

Cause: This appears when a command file is invoked from Comaid. Each
line that is read in from the file is echoed to the screen, following
this message.

Recovery: None necessary.

Component: Comaid

NOW PERFORMING xxxx COMMAND

Cause: This message flashes on the screen as Comaid performs a read,
execute, control, or teach command.

Recovery: None necessary.

Component: Comaid

Appendix B. AML/Entry Messages B-29

NOW PERFORMING R02 COMMAND TO READ CAUSE OF EOT

Cause: When an Eot is received from the controller, Comaid will
automatically petform an R 02 (read reject status) to read the cause of
the Eot. This is done so that a more informative error message can be
printed.

Recovery: None necessary.

Component: Comaid

NOW UNLOADING PARTITION

Cause: This message flashes on the screen as Comaid unloads a
partition.

Recovery: None necessary.

Component: Comaid

OBJECT MODULE SIZE=

Cause: This is the size of the output .ASC module created by the
compiler. This is the amount of memory the program takes in the
controller.

Recovery: None required

Component: Compiler

B-30 58X7338

ONCE YOU ENABLE DATA DRIVE, YOU CANNOT SPECIFY THE VARIABLES
FOR A GET COMMAND. YOU MUST FIRST PREPARE FOR THE GET.
PRESS C TO CONTINUE, OR P TO PREPARE

Cause: This reminds that user that should a GET command be encountered
by the executing controller application, the values that are sent to the
controller must be preloaded into Comaid. Due to timing constraints,
this cannot be done dynamically.

Recovery: If you have not already entered values for a GET command, and
if the executing application has GET commands in it, then choose option
"P" to prepare. If the executing application does not have GET commands
in it, or if you have already prepared for the GET command, choose
option "C" to enter data drive mode.

Component: Comaid

OUT OF PC MEMORY

Cause: This error rarely occurs, but it can occur at any time in the
compilation process. It means that the compiler has run out of space in
its 64K data segment and cannot continue the compilation.

Recovery: Try to reduce the number of variables and constants required
by the AML/E program, the number of subroutines, and the number of PT's.

Component: Compiler

OUTPUT FILENAME

Cause: Comaid is requesting the name of the output (.ASC) file to be
sent to the controller.

Recovery: Type in the filename for the output (.ASC) file and press
enter.

Component: Comaid

Appendix B. AML/Entry Messages B-31

PARTITION UNLOADED

Cause: Comaid has successfully unloaded the partition.

Recovery: None required

Component: Comaid

PLEASE CHECK FILE DEVICE

Cause: The compiler tried to read the AML source file from the
specified drive and the drive was not working. This message occurs with
the "CANNOT OPEN .ASC FILE" message.

Recovery: Ensure the drive for the source file is correct. Ensure the
door is closed on the diskette drive.

Component: Compiler

PRESS ANY KEY TO CONTINUE

Cause: This is a normal message used to delay operation until you are
ready to continue.

Recovery: Press any key when you are ready to continue.

Component: Comaid, Compiler, Configuration Utility, Editor

PRESS ANY KEY TO EXIT DATA DRIVE MODE

Cause: This message appears while the controller is in data drive mode
(i.e. the Xon state). While the controller is in data drive mode, no
Comaid requests can be honored, so the Comaid main menu does not appear.
Instead, the controller initiated request appear on -the screen as they
are received.

Recovery: When ready, press any key. This will send an Xoff to the
controller, causing data drive mode to be exited.

Component: Comaid

B-32 58X7338

• PRESS END TO EXIT

Cause: This appears at the bottom of the submenus of the Teach Utility.
It reminds the user that the submenu may be exited by pressing the End
key.

Recovery: When done specifying values for the submenu (and pressing
enter to send them to the controller), press this key to return to the
main Teach screen.

Component: Editor

PRESS ENTER TO MOVE TO

Cause: This appears when the RECALL+ or RECALL- feature is used in
Teach mode. This tells you where the currently recalled point is
located.

Recovery: Press enter. After which a second verification will appear.
Confirming the second verification will cause the robot to move.

Component: Editor

PRESS ENTER TO SPECIFY

Cause: This appears at the bottom of the submenus of the Teach Utility.

Recovery: Values are first entered into the fields of the submenus
(motion parameter submenu, DI/DO submenu, or DO submenu). Pressing
enter will then cause the new values to be sent to the controller.

Component: Editor

Appendix B. AML/Entry Messages B-33

PRESS "Q" TO QUIT OR ANY OTHER KEY TO RETRY ...

Cause: If "Q" is pressed the AML/Entry menu is displayed. Any other
key runs the configuration utility again.

Recovery: Press the desired key.

Component: Configuration utility

PRESS "Q" TO QUIT THE UTILITY OR PRESS ANY OTHER KEY TO ENTER
THE UTILITY WITH A STANDARD CONFIGURATION AND RECTIFY THE
CONFLICT

Cause: The configuration utility has encountered a conflict in the
files on the diskette. If you press "Q" you return to the main menu.
If you press any other key the utility continues and sets the
configuration to a standard configuration.

Recovery: Ensure the correct diskettes are in the diskette drive.

Component: Configuration utility

PRINT ABORTED

Cause: The print operation was aborted by the user pressing the escape
(Esc) key.

Recovery: Restart the print operation if desired.

Component: Editor

B-34 58X7338

PRINT COMPLETED

Cause: The print operation completed normally.

Recovery: None necessary.

Component: Editor

PRINTER NOT AVAILABLE

Cause: The compiler tried to initialize the printer and the printer did
not respond.

Recovery: Ensure the printer is properly configured, attached, and
turned on. Also, ensure the system board switches are properly set for
your printer.

Component: Compiler

PRINTER NOT AVAILABLE- HARDCOPY REQUEST CANCELLED

Cause: While Comaid was printing the communications buffer to the
printer, a printer error occurred.

Recovery: Ensure the printer is properly configured, attached, and
turned on. Also, ensure the system board switches are properly set for
your printer.

Component: Comaid

Appendix B. AML/Entry Messages B-35

READING INPUT FILE

Cause: This is a normal message indicating the progress of the
compilation process. This message tells you that the first of three
steps for the compiler is executing.

Recovery: None necessary.

Component: Compiler

READING MESSAGE FILES

Cause: This message occurs at the beginning of the configuration
utility. It is an informational message.

Recovery: None necessary.

Component: Configuration Utility

ROBOT TYPE CONFLICT

Cause: This message occurs when trying to get into Teach from the
Editor using PF6 and Edit/Teach is configured for a different robot.
You are unable to get into Teach.

Recovery: Reconfigure Editor/Teach for the robot you want to Teach.

Component: Editor/Teach

B-36 58X7338

• SHUTTING OFF DATA DRIVE

Cause: This message appears after a key is pressed in Comaid to exit
data drive mode. It informs the user that the Xoff is now being sent to
the controller.

Recovery: None necessary.

Component: Comaid

> SKIPPING TEXT UNTIL END OF DIGIT STRING.

Cause: A digit string (that is, a number) has too many digits. The
compiler is skipping to the end of the digit sequence.

Recovery: Locate the error that caused the compiler to skip ahead and
retry the compiler.

Component: Compiler

> SKIPPING TEXT UNTIL NEXT SEMICOLON.

Cause: An error in an AML/Entry program has caused the compiler to not
understand what the programmer intended. The compiler skips ahead to
the next semicolon.

Recovery: Locate the error that caused the compiler to skip ahead and
retry the compiler.

Component: Compiler

Appendix B. AML/Entry Messages B-317

STRING FOUND

Cause: The string of characters specified in the F or C command was
correctly found.

Recovery: None necessary.

Component: Editor

STRING NOT FOUND

Cause: The string of characters specified in the F or C command cannot
be located.

Recovery: Ensure the correct string has been specified.

Component: Editor

SUCCESSFUL COMPILATION

Cause: The compile operation has ended normally. An output file with
the extension .ASC has been produced.

Recovery: None necessary

Component: Compiler

SUCCESSFUL TRANSMISSION TO PARTITION

Cause: This message indicates that the output file has been correctly
loaded to the controller and is ready to be executed.

Recovery: None required

Component: Comaid

B-38 58X7338

SYSTEM WILL NOT RUN WITH DOS 1.1 OR 1.0

Cause: The AML/Entry diskette was created using DOS 1.1 or 1.0.

Recovery: Recreate the AML/Entry diskette using DOS 2.0 or 2.1.

Component: Menu

TARGET NOT WITHIN ROBOT WORKSPACE

Cause: This message appears whenever the user attempts to move the
robot to a point out of the workspace.

Recovery: When the robot is moved back within the robot workspace, by
any of the mechanisms provided by the Teach Utility, this message will
disappear.

Component: Editor

TEACH ABORTED

Cause: This message appears when the user aborts Teach.

Recovery: After returning to the editor, press F6 to re-enter Teach
mode.

Component: Editor

TERMINATING EDITOR SESSION

Cause: This message occurs when you attempt to save a new file using
the F8 key.

Recovery: None necessary.

Component: Editor

Appendix B. AML/Entry Messages B-39

THE 75xx IS ABOUT TO MOVE TO POINT xxxx
PRESS ENTER TO MOVE OR ANY OTHER KEY TO ABORT.

Cause: This message appears when the RECALL+ or RECALL- feature is
chosen (keys F3 or F4). It is warning you that the robot is about to
move.

Recovery: Pressing enter will cause the move to be performed.

Component: Editor

THE 7545-S IS ABOUT TO SWITCH ARM CONFIGURATION
PRESS ENTER TO MOVE OR ANY OTHER KEY TO ABORT.

Cause: This appears when the TAB key has been used to request a switch
of arm configuration for the 7545-S.

Recovery: Pressing enter will cause the 7545-S to switch arm
configuration. The robot will temporarily move from the current point,
but will end up back at the same point.

Component: Editor

THERE IS A CONFLICT BETWEEN THE CONFIGURATIONS SHOWN IN THE
THREE MESSAGE FILES

Cause: The message files from the
not reflect the same configuration.

Recovery: Use the configuration
configuration for your system.

Component: Configuration Utility

compiler, the editor, and comaid do

utility to specify the proper

B-40 58X7338

TOO MANY FILES

Cause: The diskette specified by a SAVE command has the maximum number
of files allowed already on it.

Recovery: Designate the other drive to receive the file, substitute
another formatted diskette or delete some files.

This message can also result from an invalid file name during a SAVE
when you exit from the editor.

Component: Editor

TOO MANY VARIABLES REQUESTED - PLEASE REENTER

Cause: This message appears when the user requests more than 400
variables to be sent with the C 80 control command or read with the R 80
read command.

Recovery: Perform two separate C 80 or R 80 commands.

Component: Comaid

UNABLE TO PRINT

Cause: The Personal Computer attempted to print a program listing or an
error message but was unable to because of one of the following:

• No printer is available.

• The printer power-on switch is not in the ON position.

• The printer ONLINE key is not activated.

• The printer cable is not attached.

• The printer is out of paper.

Recovery: Correct the problem with the printer and retry the operation.

Component: Editor

Appendix B. AML/Entry Messages B-41

UNABLE TO READ CAUSE OF EOT

Cause: This message appears when Comaid attempts to perform a R 02
command to read the cause of an Eot, and the controller disallows the R
02 command.

Recovery: None necessary.

Component: Comaid

UNABLE TO READ CFG.EXE TRY AGAIN

Cause: The configuration option was called from the AML/Entry menu, but
the CFG.EXE file is not on any diskette installed in the Personal
Computer.

Recovery: Place the AML/Entry diskette containing the CFG.EXE file in
the Personal Computer and retry the configuration option.

Component: Menu

UNABLE TO READ COMAID.EXE TRY AGAIN

Cause: The Comaid option was selected from the AML/Entry menu, but the
COMAID.EXE file is not on any diskette installed in the Personal
Computer.

Recovery: Place the AML/Entry diskette containing the COMAID.EXE file
in the Personal Computer and retry the compiler option.

Component: Menu

B-42 58X7338

•
UNABLE TO READ COMPILER.EXE TRY AGAIN

Cause: The compiler option was selected from the AML/Entry menu, but
the COMPILER.EXE file is not on any diskette installed in the Personal
Computer.

Recovery: Place the AML/Entry diskette containing the COMPILER.EXE file
in the Personal Computer and retry the compiler option.

Component: Menu

UNABLE TO READ EDIT.EXE TRY AGAIN

Cause: The edit option was selected from the AML/Entry menu, but the
EDIT.EXE file is not on any diskette installed in the Personal Computer.

Recovery: Place the AML/Entry diskette containing the EDIT.EXE file in
the Personal Computer and retry the edit option.

Component: Menu

UNABLE TO READ MESSAGE FILE

Cause: The edit option was selected but either the msgzedl.txt or the
msgzed2.txt file is not in any diskette installed in the Personal
Computer.

Recovery: Ensure the correct diskette is in the drive.

Component: Editor

UNABLE TO READ XREF.EXE TRY AGAIN

Cause: The XREF option was selected from the AML/Entry menu, but the
XREF.EXE file is not on any diskette installed in the Personal Computer.

Recovery: Pl'ace the AML/Entry diskette containing the XREF.EXE file in
the Personal Computer and retry the edit option.

Component: Menu

Appendix B. AML/Entry Messages B-43

UNKNOWN UNIT

Cause: This error occurs when an attempt is made to access a file on an
unknown unit.

Recovery: Retry compiling the AML/Entry program.

Component: Compiler

WARNING: AGGREGATE OF ALL FORMALS IS TYPED AS REAL

Cause: An aggregate that contains only formal parameters, none of which
have been used before this definition. In this situation, the formal
parameters default to the type "real," and the aggregate is considered a
set of real numbers.

Recovery: This is a warning only. Ensure that the default typing is
correct for your program.

Component: Compiler

WARNING: FORMAL PARAMETER LIST ITEM NOT USED:

Cause: In a call to a subroutine, one of the parameters being passed is
not used by the called subroutine. The number that follows the colon
indicates which parameter was not used; parameters are numbered from
left to right, starting with 1.

Recovery: This is a warning only, the compiler will still complete.
Ensure the parameter that is not being used is intended to be skipped.

Component: Compiler

WARNING: ROBOT MOVING TO TAUGHT POINT

Cause: This message is printed when the robot is sent a Teach command
from Comaid.

Recovery: Make sure that no one is in the workspace of the manipulator
when a Teach command is performed.

Component: Comaid

B-44 58X7338

WARNING: THIS COMMAND SHOULD NOT BE USED WITH THIS MACHINE
TYPE.

Cause: The program contains a LEFT or RIGHT command, but the system
is configured for a 7545 or 7547. Only the 7545-800S permits the use of
these commands.

Recovery: Delete the LEFT or RIGHT commands or reconfigure the
system for the 7545-800S manipulator. This is just a warning message.
No code will be produced by the AML/Entry Compiler for the LEFT or
RIGHT command that caused the warning.

Component: Compiler

WARNING: N LINES WERE TRUNCATED TO 72 CHARACTERS

Cause: This message appears when the editor loads a file that contains
a line which is longer than 72 characters (because the AML/E editor can
only process 72 characters per line).

Recovery: This is a warning only. When this message appears, data from
the original file has been lost; only the first 72 characters of each
line will be included in the new file. If you want to keep the original
file intact, use the CANCEL command to cancel the editing session.

Component: Editor

WOULD YOU LIKE A HARDCOPY OF THE COMMUNICATIONS TRANSACTIONS
(YIN)?

Cause: This message appears when the P option of Comaid is selected.
If so chosen, the communications transactions will be printed on the
printer in addition to on the screen.

Recovery: Enter "Y" if you would like the communications transactions
to be printed on the printer; otherwise enter "N".

Component: Comaid

Appendix B. AML/Entry Messages B-45

WRITE-PROTECT VIOLATION

Cause: The compiler tried to write on a diskette that is
write-protected.

Recovery: Remove the write-protect tab from the diskette, or use a
diskette that is not write-protected.

Component: Compiler

WRITING .ASC FILE

Cause: This is a normal message indicating the progress of the
compilation process. This message tells you that the last of three
steps for the compiler is executing.

Recovery: None necessary.

Component: Compiler

•

•

•
B-46 58X7338

• NUMBERED MESSAGES

ERR1: missing left parenthesis

Explanation: A left parenthesis '(' was expected, but not found.

ERR2: missing right parenthesis.

Explanation: A right parenthesis ')' was expected, but not found.

ERR3: missing semicolon

Explanation: a semicolon ';' was expected, but not found.

ERR4: missing comma

Explanation: A comma ',' was expected, but not found.

ERR005: missing single quote

Explanation: A quote mark (') was expected, but not found.

ERR10: SUBR declaration must be alone on a line.

Explanation: Only a comment may follow a SUBR declaration. Any other
statements must appear on the following line(s).

ERR11: END must be alone on a line

Explanation: Only a comment may follow an END statement. Any other
statements must appear on the following line(s).

ERR012: declaration not allowed in code section

Explanation: The organization rules for a subroutine require that all
variable declarations be made before any commands are used. This message
identifies a declaration that has occurred after a command statement.

Appendix B. AML/Entry Messages B-47

ERR13: END does not have a matching SUBR

Explanation: An END statement was encountered, but no subroutine is
open. Check to ensure that there is only one END for each SUBR
statement.

ERR14: executable may not precede first SUBR

Explanation: An executable command (for example, PMOVE, WAITI, etc.) was
found outside a subroutine. These commands must be inside a subroutine.

ERR015: outermost subroutine may not have formal parameters

Explanation: The first SUBR may not have a list of parameters because
there is no way for the subroutine to be called.

ERR21: invalid use of a symbol

Explanation: A symbolic name was used in a way that is not allowed.

ERR22: no name for definition

Explanation: A variable was defined, but no name was supplied for it.

ERR23: referenced name is not in scope

Explanation: A symbolic name that is not defined in the current scope
was used. Only global or local symbols, formal parameters, and
accessible subroutines are considered to be in the current scope.

ERR24: referenced type can not be used for NEW assignment

Explanation: A variable was defined with the NEW command to be the same
as another already defined variable; however, the existing type is not
suitable. For example, a counter may not be used to define a NEW
variable.

B-48 58X7338

ERR25: definition object already defined

Explanation: An attempt was made to define a variable that is already
defined.

ERR26: invalid definition

Explanation: The form of the definition is improper. Refer to Chapter 4
which describes the proper way to define a variable.

ERR27: global symbol may not be redefined

Explanation: An attempt to define a symbolic name is not permitted
because the name is a global variable. Global variables may not be
redefined.

ERR28: name belongs to an accessible subroutine

Explanation: An attempt to define a symbolic name is not permitted
because it is the name of a subroutine that is defined in the current
scope.

ERR30: too many digits

Explanation: Numbers may only have seven significant digits.

ERR31: expecting numeric type

Explanation: In a location where a number is expected, a plus or minus
sign preceded a variable.

ERR032: expecting numeric type: formal parameter not allowed

Explanation: In a location where a number is expected, a plus or minus
sign preceded a symbol; the symbol was a formal parameter. This is not
allowed.

ERR035: symbol too long - has been truncated

Explanation: A symbol appeared with more than 72 characters. Only the
first 72 characters are being used to identify the symbol.

Appendix B. AML/Entry Messages B-49

ERR40: bad aggregate structure

Explanation: An aggregate has a structural error. Refer to Chapter 4 for
the description of declaring an aggregate.

ERR41: nested aggregate not allowed.

Explanation: An aggregate may not contain another aggregate.

ERR42: premature end of aggregate.

Explanation: An aggregate was terminated without a right bracket '>'

ERR43: illegal type in aggregate

Explanation: An aggregate can be composed of certain data types. A data
type not allowed for use in aggregates was used. An aggregate can only
contain numbers, points, or counters.

ERR044: element does not match aggregate type

Explanation: All the elements of an aggregate must be the same data
type. The current element does not match that of the aggregate.

ERR45: formal parameter can not be assigned current type

Explanation: A formal parameter appearing in an aggregate can not be
used in this particular aggregate because the aggregate type is not
allowed for a formal parameter; for example, an aggregate of labels.

ERR46: previously used formal parameter does not match type

Explanation: A formal parameter appearing in an aggregate has been used
previously, and its type does not match the aggregate type.

ERR050: illegal form - must be a single symbolic name

Explanation: A string type must be a single name; that is, no spaces are
allowed within the two quote marks.

B-50 58X7338

ERR60: too few arguments supplied in a PT definition

Explanation: Less than the correct number of parameters were used to
specify a PT. A PT is defined with four coordinates: X, Y, Z, and roll
on the 7545, 7547, and 7545-800S manipulator.

ERR61: too many arguments supplied in a PT definition

Explanation: More than the correct number of parameters were used to
specify a PT. A PT is defined with four coordinates: X, Y, Z, and roll
on the 7545, 7547, and 7545-800S manipulators.

ERR80: DPMOVE: aggregate elements are improper type

Explanation: The aggregate supplied to DPMOVE was not an aggregate of
numbers or counters and it must be.

ERR81: DPMOVE: aggregate contains too many elements

Explanation: The aggregate supplied to DPMOVE contained more than the
correct number of elements. Four elements (X, Y, Z, and roll) are
needed on the 7545, 7547, and 7545-800S.

ERR082: DPMOVE: aggregate contains too few elements

Explanation: The aggregate supplied to DPMOVE contained less than the
required four elements (X, Y, Z, and roll). Ensure the AML/Entry system
is configured for the correct manipulator type.

ERR100: empty parameter list

Explanation: A parameter list was opened with a left parenthesis, but
there were no entries in the list.

ERR101: parameter list structure is invalid

Explanation: The structure of a parameter list is erroneous. Refer to
Chapter 4 for a description of lists.

Appendix B. AML/Entry Messages B-51

ERR104: empty field in parameter list/extra separator

Explanation: An empty field was found in a parameter list. This could be
either a missing argument or an extra comma.

ERR110: iterate: function must be a string type

Explanation: The function or subroutine specification for the Iterate
command was not specified as a string. It may be either a constant that
has been previously defined as a string, or in the Iterate statement
within single quote marks.

ERR111: iterate: function not legal for use with iterate

Explanation: An AML/Entry function which is not allowed for use in an
Iterate statement has been used.

ERR112: iterate: aggregate of conflicting size

Explanation: All of the aggregates in an Iterate statement must have the
same number of elements. The indicated aggregate does not have the
correct number.

ERR150: parameter name already used in this formal list

Explanation: The formal parameter used has already appeared in the list
in a SUBR statement.

ERR151: actual and formal parameter lists are of different size

Explanation: In a subroutine call, the calling statement does not supply
the same number of parameters as the subroutine expects.

ERR152: actual and formal parameter list item do not match:

Explanation: In a subroutine call, the indicated parameter does not have
the same type as the subroutine expects.

B-52 58X7338

ERR153: actual parameter is not a passable type:

Explanation: In a subroutine call, the indicated parameter is not
allowed to be passed to a subroutine.

ERR200: can not call self

Explanation: A call to a subroutine can not be made from within that
subroutine.

ERR201: can not call owner

Explanation: A call to a subroutine can not be made if the called
subroutine has defined the present subroutine.

ERR210: called subroutine is not reachable

Explanation: A call to a subroutine can not be made because the called
subroutine is not defined in the current scope.

ERR300: too few arguments supplied for this function

Explanation: The function requires more parameters than it was given.

ERR301: too many arguments supplied for this function

Explanation: The function requires less parameters than it was given.

ERR310: formal parameter is not legal here

Explanation: The indicated function argument is a formal parameter,
however this particular function argument may not be formal paramqer.

ERR311: already used formal parameter is improper type

Explanation: A formal parameter that has been used as one data type is
now being used where that data type is not allowed.

Appendix B. AML/Entry Messages B-53

ERR312: formal parameter type is not yet determined.

Explanation: This message is produced if a subroutine uses a formal
parameter in a command that does not assign the type before the type is
established. For example, the commands GET and PUT do not assign a
formal parameter a data type. If a formal parameter is used in one of
these commands before being used anywhere else, this message results.

ERR320: argument type is illegal here

Explanation: The data type of a function argument is not appropriate for
the function parameter; for example, a DELAY command with a point
argument.

ERR330: argument value is out of range

Explanation: A numeric value either too large or too small has been used
in a function.

ERR331: argument of type real requires rounding

Explanation: A real value that has more precision than is allowed with
this function has been used; this occurs most often when a real number
is used where an integer is required.

ERR340: invalid operator.

Explanation: This message is produced if an unknown operator is used in
the COMPC command (such as <<).

ERR341: operator expected but not found.

Explanation: This message is produced if an operator is not found in the
COMPC statement.

B-54 58X7338

ERR400: BRANCH:target is not a label• Explanation: The name used in a BRANCH statement is previously defined,
but is not a label.

ERR410: BRANCH:target may not be a formal parameter

Explanation: The name used in a BRANCH statement is a formal parameter;
labels cannot be passed as parameters.

ERR420: BRANCH:forward reference not resolved in line:

Explanation: The name used in a BRANCH statement on the indicated line
never appeared in the subroutine as a label.

ERR500: group argument has no index.

Explanation: This message is produced when a group data type is used,
but no index is supplied. The only place that a group may be used
without an index is with GET and PUT.

ERR501: index to group is not valid data type.

Explanation: This message is produced when the index to a group is an
invalid data type. An index can only be an integer, a counter, or the
element of a group of counters (assume 'c' is a counter and 'g' a group
of counters, then the following is legal: g(g(c)), but if a 'p' is a pt,
then g(p) is invalid).

ERR505: argument does not match group type

Explanation: This message is produced when an element within a group is
not the same as the initial element in the group. For example, mixing
points and constants or points and counters.

Appendix B. AML/Entry Messages B-5$

ERR600: Illegal expression - operator expected.

Explanation: This error message indicates that an operator is missing in
an expression. This will happen when two of the following appear
consecutively - a counter, a function call, or a constant. An operator
must appear between the items.

ERR601: Illegal expression - invalid left parenthesis.

Explanation: This occurs when a left parenthesis occurs in an invalid
location. If a left parenthesis follows a constant or a counter, then
this error is printed. Another situation which will cause this to
appear is if a program attempts to use a formal parameter as a group.
Formal parameters are not allowed to be groups, thus the left
parenthesis is invalid.

ERR602: Illegal expression - unbalanced parentheses.

Explanation: This occurs when the end of an expression is reached and
the number of right parentheses is less than the number of left
parentheses.

ERR603: Illegal expression - invalid term after right parenthesis.

Explanation: This occurs when a function call, constant, or counter
immediately follows a right parenthesis (one that was not part of a
function call). If a function call, constant, or counter immediately
follows the right parenthesis of a function call, then ERR600 is
generated. As with ERR600, an operator is probably missing.

ERR604: Illegal expression - operator expected between parentheses.

Explanation: This occurs when a right parenthesis is followed by a left
parenthesis. If the right parenthesis was part of a function call, then
ERR601 is generated. For example, (A+B)(C+D) will cause this error.
Either an operator may be missing or one of the parenthesis may
accidentally be the wrong one.

•

•
B-56 58X7338

ERR605: Illegal expression - multiplication operation illegal here.

Explanation: This occurs when a multiplication operator occurs in an
illegal location. Multiplication operators must always follow a
counter, right parenthesis, or a constant.

ER11606: Illegal expression - division operation illegal here.

Explanation: This occurs when a division operator occurs in an illegal
location. Division operators must always follow a counter, right
parenthesis, or a constant.

ER11607: Illegal expression - invalid right parenthesis.

Explanation: This occurs when a right parenthesis follows an addition,
subtraction, multiplication, or division operator. Either the operator
needs to be removed or an operand (counter, constant, function call,
etc) needs to be inserted.

ERR608: Illegal group reference - right parenthesis expected.

Explanation: This occurs when a group reference is not properly
terminated by a right parenthesis.

ERR609: Illegal function call - right parenthesis expected.

Explanation: This occurs when a function call is not properly terminated
by a right parenthesis.

ERR610: Expression expected.

Explanation: This occurs when expression is missing. Null
expressions are not permitted.

ERR611: Expression too large, break into subexpresslons.

Explanation: This error occurs when the expression is too complex to
allow code to be generated for the robot controller. When this error
occurs, break the expression into smaller components. This error rarely
Occurs.

Appendix B. AML/Entry Messages B-57

ERR612: Illegal expression - extra right parenthesis.

Explanation: This occurs when an expression contains an extra right
parenthesis. The user should check to make sure a left parenthesis is
not missing.

ERR613: Illegal expression - unexpected term.

Explanation: This occurs when an illegal term appears in an expression.
An expression must consist of symbols (e.g., counters), operators (e.g.,
+, *, and /), built-in functions, constants, and parentheses.

ERR800: unexpected: can not be properly interpreted

Explanation: The indicated item is out of place; the compiler can not
interpret what it is supposed to be.

ERR900: premature end-of-file (i.e. insufficient ENDs)

Explanation: The end of the file has been reached, but a number of
subroutines remain open; there is not an END for every SUBR.

ERR910: closing END is not last in file

Explanation: The END statement that corresponds to the first (outermost)
subroutine has been encountered, but more data remains in the AML file.

ERR950: **** Object Module Too Large

Explanation: The program is larger than the maximum amount of memory
available in the controller.

ERR951: Object Module too large for PC.

Explanation: The .ASC file that the compiler was building became too
large for the compiler to continue. This can occur when the AML/Entry
system is being used with a PC that has less than 256K, or when the user
has installed several resident programs in memory in addition to the
AML/Entry system (i.e. VDISK or RDT). Either decrease the size of the
AML/Entry program, remove some of the other modules from resident
memory, or add more memory to your computer.

B-58 58X7338

• ERR970 to ERR999

Explanation: These messages are generated if the compiler detects an
internal error condition. If one appears, please report this to your IBM
representative. The messages are all of a similar form:

ERR9xx: compiler error - PLEASE REPORT TO IBM

Appendix B. AML/Entry Messages B-59

AMLECOMM/COMAID ERROR MESSAGES

This section contains the AMLECOMM error messages. It does not contain
a discussion of the errors that could occur in the executing application
controlling the manipulator, as these are discussed in the AML/E System
Documentation. Because COMAID uses AMLECOMM, these error messages will
also appear during the execution of COMAID.

ERROR 1 - Initialization Error

Explanation: This error occurs either when the user application calls
AMLECOMM for initialization (OPERATION.A$="") and AMLECOMM has already
been initialized or if the communications port specified by ADAPT.A$
cannot be opened.

ERROR 2 - CONVERT1 or CONVERT2 Not Loaded

Explanation: This error will occur only if AMLECOMM is being used
interpretively with BASICA, and the user forgot to install one or both
of the numeric conversion routines CONVERT1 and CONVERT2. The remedy is
to install these by returning to DOS and entering each of these commands
to invoke the corresponding .COM files to install each of these modules.

ERROR 3 - Illegal Function Requested

Explanation: The user application has requested an illegal function.
This primarily occurs because the user did not properly configure the
version of AMLECOMM that is being used. For example, requesting a R
record from a version of AMLECOMM not configured for R records will
cause this error.

ERROR 4 - Illegal Partition Number Specified

Explanation: This error occurs when a partition specified in PART.A$ to
either an unload or download request was illegal. PART.A$ must be
either "1", "2", "3", "4", or "5".

ERROR 5 - Basic File Error (52 or 55) using COMM.A or OPENFCOMM.A

Explanation: This error occurs when Basic Error number 52 or 55 occurs.
This error will occur most commonly if AMLECOMM is called and the port
specified by ADAPT.A$ was not opened or abnormally closed. See the
description of these errors in Appendix A of the Basic reference manual.
When this occurs, the user should CLOSE COMM.A and reopen the COM port
by setting OPERATION.A$=OPEN.A$

B-60 58X7338

ERROR 6 - Disk I/O Error (71 or 72)

Explanation: This error occurs when Basic Error number 71 or 72 occurs.
This error occurs whenever a disk I/O error occurs. See the description
of these errors in Appendix A of the Basic reference manual. When this
occurs, the user should make sure the diskette is inserted properly in
the disk drive and retry the operation.

ERROR 7 - Data Drive Must First Be Turned Off

Explanation: This error occurs when the user application calls AMLECOMM
with OPERATION.A$ not equal to D.A$ and data drive mode is active. That
is, once the user places AMLECOMM in data drive mode, no request other
than a data drive request can be honored. The remedy is to turn data
drive off by setting OPERATION.A$=D.A$ and DDSWITCH.A%=OFF.A%.

ERROR 8 - New Function Denied: Old Funct. Pending

Explanation: This error is similar to number 7. It occurs when an old
request is still pending (i.e. an X request with posting) and the user
application is requesting a new function. The user application must
allow the old request to complete before a new one can be accepted. The
remedy is to poll AMLECOMM until STATUS.A%=IDLE.A%.

ERROR 9 - Illegal Port Number or Value for DO

Explanation: This error occurs when the user application is attempting
to set either an illegal DO port or a legal DO port to an illegal value.
The DO port specified by PORTNUM.A% must be from 1,2,3...127. The value
specified by PORTVAL.A% must bo 0 or 1. Note that this error will not
occur if the user application specifies a DO port greater than the
number installed, but still within the 1 to 127 range. In this case the
controller will send back an EOT and ERROR 19 is returned to the user.

ERROR 10 - File to Download Not Found

Explanation: This error occurs when the file specified in NAME.A$ on a
download request cannot be found. The string in NAME.A$ is simply
passed to the Basic OPEN command, so check your level of DOS to make
sure the filename meets the requirements.

ERROR 11 - Too Many Variables to Fit in RVARS or PVARS

Explanation: This error occurs when more variables are sent from the
controller than can be fit into RVARS.A or PVARS.A. The remedy is to
increase the value of VARMAX.A in AMLECOMO.BAS, adjust the DIM
statements in AMLECOMO.BAS that depend on VARMAX.A (i.e.
RVARS.A,PVARS.A,GVARS.A, and C8OVARS.A), and re-adjust VARMAXRECS.A.
The configuration utility for AMLECOMM will have to be rerun to
incorporate the updated values into the program.

Appendix B. AML/Entry Messages B..61

ERROR 12 - Too Many D Records to Fit in RRVARS$

Explanation: When D records are received from the controller, they are
placed in RRVARS.A$. The value of VARMAXRECS.A indicates the size of
this array. When this error occurs, raise the value of VARMAXRECS.A and
change the DIM statement for RRVARS.A$ in AMLECOMO.BAS. VARMAXRECS.A
should be set to INT(VARMAX.A/4)+1. It must also be greater than or
equal to 8.

This message can also appear from within Comaid, since Comaid uses
Amlecomm. Comaid
(which corresponds
variables are sent
command or a read
appears.

is configured to provide access to 400 variables
to an RRVARS of size 101). If more than 404
from the controller to the host (either from a PUT
all program variables request), then this error

ERROR 13 - Illegal VARCNT or VAROFFS

Explanation: This error occurs when either VARCNT.A% or VAROFFS.A% is
negative on a request to read variables. Each of these values must be
non-negative.

ERROR 14 - Hardware Error

Explanation: This error occurs when one of the signals from the RS-232
cable are lost. It occurs when Basic Error numbers 24, 25, 57, or 68
occur. When this occurs, the user application can attempt error
recovery by closing file COMM.A, and trying to reopen the ADAPT.A$
communcations port by setting OPERATION.A$=OPEN.A$. If this works then
a reset operation should be considered to clear any errors that may have
resulted from the hardware error in the controller. If opening the port
fails, then a true hardware error has occurred (e.g., the cable has been
removed or manipUlator power has been lost), and an operator should be
notified. Please see the Basic Reference for more on errors 24, 25, 57,
and 68.

ERROR 15 - Communicationes Line Data Error

Explanation: This occurs when a parity error occurs on a record received
from the controller. This communication error is rare, and when it
occurs the user application should call AMLECOMM to reset any TE error
that may have resulted (via the RSTERR.A$ X request). If this occurs
often, a faulty cable could be the problem.

B-62 58X7338

• ERROR 16 - Controller Data Drive Response Wrong

Explanation: This occurs when the controller has responded incorrectly
in a data drive scenario. When this occurs the circular transaction
buffer BUFFER.A$ should be inspected to verify that indeed the
controller responded incorrectly. If the error can be recreated, than
it should be reported to IBM.

Appendix B. AML/Entry Messages B-63

ERROR 17 - Receive COntroller Record Error

Explanation: Thisl error occurs when on a third retry to send data to the
controller, a 3 second timeout occurs and no response is received from
the controller. The user should make sure the controller is ON-LINE,
and no error state exists (no LED's on).

ERROR 18 - Checksum 'Error on Received Cntrlr Recd

Explanation: This error occurs when a checksum error occurs on a
received D record or the controller NAK's a D record during the download
operation 3 consecutive times. If this error occurs because of the
download operation, than the .ASC file has probably been corrupted and
they corresponding source file should be recompiled. If this error
occurs because of a checksum error on a received D record from the
controller, than the user application should clear any TE error that may
have resulted (by using the RSTERR X request), and retry the request
that caused this error.

ERROR 19 - Controller Has Sent an EOT to You

Explanation: This is the most common error, and occurs whenever an EOT
has been sent by the controller. An EOT is sent when by the controller
when a message received from the PC, but it cannot be honored.
Examples are sending a T record when an application is running, or
sending a R request that is in error (i.e. R13). The user should issue
the RSTAT request (R02) which will return the cause of the EOT.

ERROR 20 - Robot Controller Response Timeout

Explanation: This occurs when we are awaiting data from the controller
and it never arrives. Check that the controller is ON-LINE and no
errors exist (no LED's lit). If this is the case and the error can be
recreated, than it should be reported to IBM.

B-64 58X7338

ERROR 21 - Three NAKs Received From the Controller

Explanation: This error occurs when the controller sends a NAK to each
retry of a transaction in the communication protocol. If this error
occurs often, then a faulty cable could be the problem.

ERROR 22 - Controller XOFF Timeout

Explanation: This error occurs when 30 seconds expire after an XOFF has
been received from the controller, and another XOFF or an XON does not
arrive. If this error can be recreated than it should be reported to
IBM.

ERROR 23 - Illegal Data Drive Request

Explanation: This error occurs when the controller sends a D record
beginning a data drive transaction that is not supported by AML/E V4.0.
This should never be the case, and if it can be recreated, than it
should be reported to IBM.

ERROR 24 - Incorrect Length Record Received From Controller

Explanation: This error occurs when the size of a D record sent by the
controller does not coincide with the size specified by the length field
of the D record. When this error occurs, the user application should
reset any TE that may have resulted by using the RSTERR X request and
retry the operation. If it can be recreated, than it should be reported
to IBM.

ERRORS 25 -29 - Unused

Explanation: These error numbers will never be returned. They are
reserved for future expansion.

ERROR 30 - AMLECOMM Error, Please Report to IBM.

Explanation: This error number will be returned when the AMLECOMM error
trap is invoked with an ERR that is not 24, 25, 52, 55, 57, 68, 71, or
72 and an ERL that is one of the I/O statements. This "soft" error is
one that could be recovered from by the user's application had a more
specific error number been returned. The user should report this to IBM
so that the error handler can be enhanced to cover the error that has
been discovered. The actual error number will be in IBMERR.A and the
actual error line will be in IBMERL.A.

Appendix B. AML/Entry Messages B-65

MSGCOM.TXT

The file MSGCOM.TXT is provided to the user to give his application
on-line access to many of the AML/E, and AMLECOMM errors. Five sets of
data reside in MSGCOM.TXT.

• The first 30 lines contain explanations for the 30 errors described
in the preceding section.

• The next 7 lines contain explanations for the 7 bits of the machine
status error word. They are given from the most significant bit
(HEX "80" - Servo Error) to the least significant bit (HEX "02" -
AML/Entry Error). It should be mentioned that when an AML/Entry
error occurs, the control word will also flag the data error bit,
giving a value of HEX "06" instead of just HEX "02".

• The next 22 lines contain the RSTAT (R02) reject status error codes.
Each line is prefixed by the two character code and a blank before
the actual English explanation.

• The last 11 lines contain the AML/E Data errors.

• The last 7 lines contain the AML/E Version 4 errors. As with the
R02 messages, each line is prefixed by a two character code and a
blank.

It is recommended that the user browse the file MENUCOMM.BAS to see how
to read, store, and later print out appropriate error messages.

B-66 58X7338

APPENDIX C. VALUES FOR THE LINEAR COMMAND

This appendix contains the linear rate values for the IBM7545,
7545-800S, and 7547 Manufacturing Systems. The following table gives
arm speed at tool tip and the straight line error for the different
LINEAR command values in both millimeters and inches. Refer to
Chapter 4, "Learning the AML/Entry Language" and to
Appendix A, "Command/Keyword Reference" for a description of the LINEAR
command.

Appendix C. Values for the LINEAR Command C-1

IBM Manufacturing Systems LINEAR Rate Values

Programmed
rate

Arm speed at
tool tip

mm/sec. (in./sec)

Straight line
error

mm (in.)

1 60 (2.4) 3.0 (0.12)

100 (3.9) 3.7 (0.15)

3 140 (5.5) 4.4 (0.17)

4 180 (7.1) 5.3 (0.21)

5 225 (8.9) 6.2 (0.24)

6 265 (10.4) 6.9 (0.27)

7 305 (12.0) 7.6 (0.30)

8 345 (13.6) 8.4 (0.33)

9 385 (15.2) 9.3 (0.37)

10 430 (16.9) 10.0 (0.39)

20 430 (16.9) 11.5 (0.45)

30 430 (16.9) 11.5 (0.45)

50 430 (16.9) 11.5 (0.45)

0
i

Exit linear speed and motion

Notes:

1. The straight line error in the table is the maximum
deviation from the straight line (defined by two end
points) that the system travels while moving in one
direction.

2. Speeds in the table are for planning purposes only and
are typical minimum values. Linear speed can not be
controlled by the user. Linear speed values vary in
different locations in the workspace. Therefore, you
cannot expect movement at a constant speed when
performing long moves using the LINEAR command.

APPENDIX D. VALUES FOR THE PAYLOAD COMMAND

7545 PROGRAM SPEED VALUES FOR PAYLOAD COMMAND

7545 Program Speed Values ter PAYLOAD Command

Prorate
speed
values

Speed of 91
at the kW
tip mm/sec
fln/aec)

Speed of 92
at the tool
tip mm/sec
(In/sec)

Roll
axis
speed
deg/sec

Z-axis
speed
mm/sec
On/ac)

Maximum
payload
for speed
Al MI

1 300 (11.8) 200 (7.9) 100 60 (2.4) 10 (22)
2 500 (19.7) 380 (15.0) 170 100 (3.9) 10 (22)
3 700 (27.6) 530 (20.9) 240 140 (5.5) 10 (22)
4 820 (32.3) 620 (24.4) 280 165 (6.5) 10 (22)
5 900 (35.4) 700 (27.6) 310 180 (7.1) 8 (17.6)
6 1000 (39.4) 720 (28.3) 330 190 (7.5) 7 (15.4)
7 1100 (43.3) 850 (34.7) 370 220 (8.7) 6 (13.2)
8 1200 (47.2) 900 (35.4) 400 235 (9.3) 4 (8.8)
9 1300 (51.2) 970 (38.2) 430 255 (10) 3 (6.6)

10 1400 (55.1) 1050 (41.3) 480 280 (11) 1 (2.2)
0 Default to speed switches

Speeds in the table are for planning purposes only and are typical
minimum values. Speed values only consider a single joint moving.
Speed at the end of the arm is greater when multiple joints are used on
a single move.

Appendix D. Values for the PAYLOAD Command D-1

7545-800S PROGRAM SPEED VALUES FOR PAYLOAD COMMAND

7545 with APO R00107 Program Speed Values ter PAYLOAD Command

Program
speed
values

Speed of 01
at the tool
tip mm/sec
(in/sec)

Speed of 02
at the tool
tip mm/sec
(in/sec)

Roll
axis
speed
deg/sec

Z-axis
speed
mm/sec
(in/see)

Maximum
mind
for speed
kg (11)

1 294 (11.6) 294 (11.6) 103 61 (2.4) 5 (11.0)
2 490 (19.3) 490 (19.3) 171 102 (4.0) 5 (11.0)
3 687 (27.0) 687 (27.0) 240 140 (5.5) 5 (11.0)
4 768 (30.2) 768 (30.2) 278 166 (6.5) 5 (11.0)
5 887 (34.9) 887 (34.9) 310 185 (7.3) 4 (8.8)
6 941 (37.0) 941 (37.0) 329 197 (7.8) 3.5 (7.7)
7 1073 (42.2) 1073 (42.2) 372 210 (8.3) 3 (6.6)
8 1189 (46.8) 1189 (46.8) 416 248 (9.8) 2 (4.4)
9 1285 (50.6) 1285 (50.6) 449 268 (10.6) 1.5 (3.3)

10 1356 (53.4) 1356 (53.4) 480 280 (11.0) 1 (2.2)
0 Default to speed switches

Speeds in the table are for planning purposes only and are typical
minimum values. Speed values only consider a single joint moving.
Speed at the end of the arm is greater when multiple joints are used on
a single move.

7547 PROGRAM SPEED VALUES FOR PAYLOAD COMMAND

7647 Program Speed Values for PAYLOAD Csmasad

Prig=
spud
rains

Spade 81
at the tool
tip mm/au
MA

Spud of 82
st tho tool
tip mm/see
Mu)

Roll
axis
spud
lite/su

1-axis
spud
maisse
pi/see)

Maximum
Mind
for spud
kg fib)

1 310 (12.2) 185 (7.3) 105 60 (2.4) 20 (44)
2 520 (20.5) 310 (12.2) 175 100 (3.9) 20 (44)
3 730 (28.7) 440 (17.3) 245 140 (5.5) 20 (44)
4 850 (33.5) 505 (19.9) 285 165 (6.5) 14 (30.8)
5 950 (37.4) 565 (22.2) 320 180 (7.0) 12 (26.4)
6 1000 (39.4) 600 (23.6) 340 195 (7.7) 11 (24.2)
7 1140 (44.9) 680 (26.8) 385 220 (8.7) 10 (22)
8 1230 (48.4) 735 (28.9) 410 235 (9.3) 6 (13.2)
9 1330 (53.4) 795 (31.2) 445 255 (10) 4 (8.8)

10 1450 (57) 865 (34) 485 280 (11) 3 (6.6)
0 Default to speed switches

Speeds in the table are for planning purposes only and are typical
minimum values. Speed values only consider a single joint moving.
Speed at the end of the arm is greater when multiple joints are used on
a single move.

Appendix D. Values for the PAYLOAD Command D-3

D-4 58X7338

APPENDIX E. SPEED/WEIGHT VALUES BASED ON Z POSITION

The tables in this section provide the the maximum program speed setting
based on the height of the Z axis and the payload.

Speeds in the table are guidelines for planning purposes only, not
specifications of appropriate speeds for all systems. Actual speeds
vary, depending on the stability and weight distribution of your
specific attachment.

To use these tables, find the weight of your payload on the vertical
column of the chart. Along the horizontal find the Z-axis length. The
length is the extension of the Z-axis plus the distance to the center of
mass of the payload. The intersection of these two numbers is the
maximum value you can safely use in the PAYLOAD command.

nr
ft

indicates that it is not recommended to run the manipulator with a
Z-axis of that length and that payload.

The Z-arm height is illustrated below.

Appendix E. Speed/Weight Values Based on Z Position E-1

7545 SPEED/WEIGHT RELATIONSHIP BASED ON Z POSITION

Payload
kg (lb)

Z-axis length to the cantor of
mass of the payload (la mm)

-

0 . 10 20
-

30 40 50 60 70 10
-

90 100 110 120 130 140 151 100 170

1 (2.2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

2 (4.4) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 (5.6) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 (1.8) 8 • 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

5 (11.0) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

5 (13.2) 7 7 7 7 7 7 7 6 6 6 6 6 8 6 6 6 6 6

7 115.4 1 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5

1 (17.5) 5 5 5 5 5 5 5 5 5 5 5 5 4 3 3 3 3 3

9 (19.8) 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3

10 122.01 4 4 4 4 4 4 4 4 4 4 4 3 2 2 2 2 1 1

Payload
kg (lb)

Z-axls length to the center of
mass of the payload (11 mm)

180 190 200 210 220 230 240 250 210 270 210 200 300 310 320 330 340 350

1 (2.2) 10 10 10 10 10 10 10 10 10 9 8 7 6 5 4 3 2 1

2 (4.4) 9 9 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 nr

3 (5.1) 9 9 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 nr

4 (1.0) 8 8 8 8 8 8 8 8 8 8 6 5 4 3 2 1 nr nr

5(11.0) 6 6 6 6 6 6 6 4 4 4 3 2 1 IW 11(re nr nr

1(13.2) 6 5 5 3 3 3 3 3 3 3 3 1 1 nr nr nr nr nr

7(15.4) 5 3 3 3 3 3 3 3 2 2 re re nr nr nr re nr nr

0(17.5) 3 3 3 2 2 1 1 1 1 1 nr nr nr nr re re re nr

11(11.01 2 2 1 1 1 1 1 1 1 re nr re nr IV VW nr WI' it

10(22.0) 1 1 1 1 1 nr re nr re nr nr nr nr nr IV it IV nr

Note: "nr" means not recommended.

E-2 58X7338

Notes:

• nr
If

means not recommended. It is not recommended to run the
manipulator with a Z-axis of that length and that payload.

• Speeds in the table are guidelines for planning purposes only, not
specifications of appropriate speeds for all systems. Actual speeds
vary, depending on the stability and weight distribution of your
specific attachments.

Appendix E. Speed/Weight Values Based on Z Position E-3

7545-800S SPEED/WEIGHT RELATIONSHIP BASED ON Z POSITION

Payload
kg Oh)

Z-axis length to the center of
mass of the payload II. mm)

0 10 20 30 40 50 60 70 80 00 100 110 120 130 140 150 160 170

1 (2.2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

2 14.4) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

3 (6.6) 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

4 (8.8) 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 (11.0) 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Payload
kg (lb)

Z-axis length to the center of
mass of the payload ill mm)

180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

1 (2.2) 10 10 10 10 10 10 10 10 10 9 8 7 6 5 4 3 2 1

2 (4.4) 8 8 8 8 8 8 8 8 8 7 6 5 4 3 2 1 nr nr

3 16.6) 6 6 6 6 6 6 6 6 6 5 4 3 2 1 nr nr nr nr

4 (8.8) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 nr nr nr nr

5 111.0) 1 1 1 1 1 1 1 1 1 1 1 nr nr nr nr nr nr nr

Notes:

• nr
11

means not recommended. It is not recommended to run the
manipulator with a Z-axis of that length and that payload.

• Speeds in the table are guidelines for planning purposes only, not
specifications of appropriate speeds for all systems. Actual speeds
vary, depending on the stability and weight distribution of your
specific attachments.

7547 SPEED/WEIGHT RELATIONSHIP BASED ON Z POSITION

hylud
he (lb)

1-uls length legs enter el
mess of the pulsed (Is mml

0 10 20 30 40 50 60 70 80 90 100 110 120 130
1 (2.2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2 (4.4) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
3 (8.5) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
4 (11.8) 9 9 9 9 9 9 9 9 9 9 9 9 9 9
5 (11.0) 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8(13.2) 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8(17.8) 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 (22.0) 7 7 7 7 7 7 7 7 7 7 7 7 7 7
13 (28.5) 4 4 4 4 4 4 4 4 4 4 4 4 4 3
18 (35.2) 3 3 3 3 3 3 3 3 3 3 3 2 2 2
20 (44.0) 3 3 3 3 3 3 3 2 2 2 2 2 2 2

hylud
14 PM

Z-exls Meth to the cuter el
mess if the pulsed (le mm)

140 150 160 170 180 190 200 210 220 230 240 250 280 270
1 (22) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2 (4.4) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
3 (5.8) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
4(8.8) 9 9 9 9 9 9 9 9 9 9 9 9 9 9
5 (11.0) 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5 (13.2) 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8(17.6) 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 (22.0) 7 7 7 7 7 7 7 7 7 7 7 7 6 6
13 (28.5) 3 2 2 2 2 2 2 2 2 2 2 2 2 2
18 (35.2) 2 2 2 2 1 1 1 nr nr nr nr nr nr nr
10 (44.0) 2 1 1 nr nr nr nr nr IN nr nr nr nr nr

Appendix E. Speed/Weight Values Based on Z Position E-5

Payload
ks ON

Z-axis booth to the cuter st
 taus of Oa payload po lug

280 290 300 310 320 330 340 350 380 370 380 390 400 410
1 (2.2) 10 10 10 10 10 10 9 8 7 6 5 4 3 nr
2 (4.4) 10 10 10 10 10 9 8 7 6 5 4 3 2
3 (8.8) 10 10 10 10 9 8 7 6 5 4 3 2 1 nr
4 (8.8) 9 9 9 9 8 7 6 5 4 3 2 1 nr nr
5 (11.0) 8 8 8 8 7 6 5 4 3 2 1 nr nr nr
8 (13.2) 8 8 8 7 6 5 4 3 2 1 nr nr nr nr
1 (17.8) 7 7 7 6 5 4 3 2 1 nr nr fW nr 1W

18 (22.0) 5 4 3 2 1 nr nr nr nr nr nr 1W 11f nr
13 (28.8) 1 1 1 nr nr nr nr IT nr rw nr nr nr nr
18 (35.2) nr nr nr nr nr nr nr nr nr nr nr nr nr
20 (44.0) nr nr nr nr nr nr nr nr nr nr rtr nr iv nr

Notes:

• nr
H

means not recommended. It is not recommended to run the
manipulator with a Z-axis of that length and that payload.

• Speeds in the table are guidelines for planning purposes only, not
specifications of appropriate speeds for all systems. Actual speeds
vary, depending on the stability and weight distribution of your
specific attachments.

E-6 58X7338

APPENDIX F. COMMUNICATIONS CABLE WIRING DIAGRAMS

LOCAL RS-232-C CABLE WIRING

IBM Industrial
or IBM Personal
25—Pin Connector

Computer
Computer

25—Pin
Controller

Connector

Transmit 2 Transmit2 I i
data /

x
data

/
Receive
data

1 I 3 Receive
data

3

Request
to send

4 Request to
send

4

Clear to
send

5 1---> 5 Clear to
send

Data set
ready

6 Data set
ready

6

Signal
ground

7 Signal
ground

7

Carrier 8 Carrier8 I
detected /

x
detected

/ \
Data term
ready

t 20 Data term
ready

20

Local RS-232—C Cable Wiring

Appendix F. Communications Cable Wiring Diagrams F-1

Host
25—Pin Connector 25—Pin

Controller
Connector

Request
to send

Clear to
send

Request
to send

Clear to
send

4

5

4

L-> 5

Signal
ground

7

18 detect
RS-422

Transmit
data (+)

19 > 15 Receive
data (+)

Transmit
data (—)

25 > 17 Receive
data (—)

Receive
data (+)

15 Transmit
data (+)

< 19

Receive
data (—)

17 < Transmit
data (—)

25

Data set
ready

6 r-> 6 Data set
ready

Signal
ground

7 7 Signal
ground

Carrier
detected

8
/

x

8 Carrier
detected

i

/
Data term
ready

20 I I 20 Data term
ready

LOCAL RS-422 CABLE WIRING

Local RS-422 Cable Wiring

APPENDIX G. CONFIGURATION PARAMETERS FOR AMLECOMM

This appendix discusses the configuration parameters for AMLECOMM that
are contained in the file AMLECOMO.BAS. The user must modify this file
according to the needs of his application. The user must never delete,
reorder, or renumber any of these lines. The user should only change
the values contained in this file.

1200 '
1210 'DEFAULT INSTALLATION CONFIGURATION:
1220 '
1230 POSTING.A% = N.A% 'Default to no state posting
1240 COMM.A = 1 'Base file number for AMLECOMM
1250 OPENFCOMM.A = 3 'File number for file to download
1260 VARMAX.A = 400 'Maximum number of variables
1265 VARMAXRECS.A = 101 'Set equal to INT(VARMXA.A/4)+1
1270 ROBOT.A$ = "7545" 'Default to a 7545
1280 ADAPT.A$ = "COM1:" 'Default to COM1
1330 ARRAYMODE.A% = 0 'Use 0 based arrays for R,G,P,C8OVARS
1340
2000 DIM RRVARS.A$(101)
2001
2010 DIM RVARS.A(400)
2020 DIM GVARS.A(400),PVARS.A(400)
2030 DIM C8OVARS.A(400)
3265 ON ERROR GOTO 0
3405 ON ERROR GOTO 0

Set size at least equal to VARMAXREC
Must be >=8
Set size equal to VARMAX.A
'Set size equal to VARMAX.A

Set size equal to VARMAX.A
Replace 0 with application error trap
Replace 0 with application error trap

• POSTING.A% This variable allows the user to begin an execute command
and then poll AMLECOMM to check for completion status. By using
this posting feature, an execute command that may take many seconds
allows other processing to be done while waiting for completion. A
good example is the return home execute command. The elapsed time
for a return home command can approach 90 seconds. It would be nice
if during the 90 seconds the user's application program could also
do other work as well. IF POSTING.A% is set to Y.A% then the
execute return home command would be started and the status of the
return home would be returned to the user via the output variable
STATUS.A%. Upon subsequent polls to AMLECOMM, the user could
determine when the return home actually completed. Between polls
the user's application program could perform other routines. An
alternative to polling is to use the ON COM statement, and is
discussed in the body. POSTING.A% only affects X records.

• COMM.A This variable needs to be set to a number that may be used as
a DOS file number for the communications file. Under DOS,
communications lines are treated as files, thus a file number is
assigned. If an application program uses file numbers 1 and 2, then
COMM.A could be set to 3. Remember that over 3 files requires the

Appendix G. Configuration Parameters for AMLECOMM G-1

explicit specification of the number of files, using the /f: BASICA
parameter.

• OPENFCOMM.A is similar to COMM.A, except this is a file number used
for a file to be downloaded. When a user requests a download
operation from AMLECOMM, AMLECOMM will use this file number to open
the requested file.

• VARMAX.A This variable allocates storage for the maximum number of
variables that exist in an application running in the robot
controller. Depending on the number of variables in the AML/E
program VARMAX.A allows storage to be saved by eliminating a fixed
maximum value. Remember that even if there are no variables in the
AML/E program there are still variables that are returned if a read
variables command is executed. For example, AML/E version 4 returns
34 variables even if no counters are defined in the AML/E program.
Any declared counters come after this base set.

• VARMAXRECS.A is used internally, and should be set to
INT(VARMAX.A/4)+1. For example, if VARMAX.A were set to 39, then
VARMAXRECS.A would be set to 10. If VARMAX.A were set to 40, then
VARMAXRECS.A would be set to 11. VARMAXRECS.A must be given a value
>=8, otherwise the configuration will fail.

• ROBOT.A$ This variable defines the type of robot that is being
communicated to via AMLECOMM. Set ROBOT.A$ to "7545", "7545-800S",
or "7547".

• ADAPT.A$ This variable is set to either "COM:" or "COM2:",
depending on which asynchronous communication card through which the
user intends to communicate with the robot controller.

• ARRAYMODE.A% This variable indicates whether the arrays used for
reading variables, poking variables, and data drive are 0 or 1
based. If 0 is chosen, then the first variable in controller memory
must be accessed as variable number 0, the second as variable number
1, etc. If arraymode 1 is chosen, then the first variable in
controller memory must be accessed by variable number 1, the second
by 2, etc. Note that the AML/E compiler produces its cross
reference listing using a 0 based mode, thus arraymode should be set
to 0 if the user intends to refer to variables as they appear in the
cross reference listing produced by the XREF program. If arraymode
1 is chosen, then the user must add 1 to the number of a variable
listed in the cross reference. For example a variable assigned
number 40 by the cross reference program is accessed as 40 for
ARRAYMODE.A%=0 and 41 for ARRAYMODE.A%=1.

RVARS.A and C8OVARS.A are affected by ARRAYMODE.A%. The first
variable read by the read variables request (VARS.A$) will be placed
in RVARS.A(ARRAYMODE.A%), the second in RVARS.A(ARRAYMODE.A%+1),
etc. Likewise variables to be sent to the controller using the poke
variables request (POKE.A$) should be loaded into
C8OVARS.A(ARRAYMODE.A%), C8OVARS.A(ARRAYMODE.A%+1), etc. Thus not
only does ARRAYMODE.A% affect the numbering of the variables, but
also whether the first value is put in the zero-position or the
one-position of the arrays.

G-2 58X7338

GVARS.A and PVARS.A are also affected by ARRAYMODE.A%. For example,
should the user want the values 1 and 2 sent for variables 34 and 35
according to the cross reference listing and ARRAYMODE.A% 0, then
GVARS.A(34) must be set to 1 and GVARS.A(35) must be set to 2. If
ARRAYMODE.A%=1 then variables 34 and 35 according to the cross
reference listing are really the 35th and 36th variables. Thus the
user would set GVARS.A(35) to 1 and GVARS.A(36) to 2. If
ARRAYMODE.A=1, then GVARS.A(0) and PVARS.A(0) are ignored entirely.

• RRVARS.A$(VARMAXRECS.A) This array is used internally, and must be
dimensioned with a size equal to VARMAXRECS.A. VARMAXRECS.A (and
thus the size of this array) must be at least 8 in size. Due to
limitations in BASICA and the Basic Compiler this cannot be
DIMensioned as a function of VARMAXRECS, and thus the user make sure
the size of this array and VARMAXRECS.A agree. Unexpected results
will occur if this is not the case. The DIM statement for this
array should not be removed from AMLECOMO.BAS, even if the user does
not need the R80 facility. The config utility will fail if this is
removed. The config utility will strip the unneeded arrays from the
configured AMLECOMM program.

• RVARS.A(VARMAX.A) This array is used to return variable values from
a R80 request (read variables). As just described, the first value
from a read request is placed either in RVARS.A(0) or RVARS.A(1)
depending on the value of ARRAYMODE.A%. The size of RVARS.A must be
set equal to VARMAX.A. Unexpected results will occur if this is not
the case. The DIM statement for this array should not be removed
from AMLECOMO.BAS, even if the user does not need the R80 facility.
The config utility will fail if this is removed. The config utility
will strip the unneeded arrays from the configured AMLECOMM program.

• GVARS.A(VARMAX.A),PVARS.A(VARMAX.A) These arrays are used for GET
and PUT operations in data drive. They should be dimensioned with
size equal to VARMAX.A. Unexpected results will occur if this is
not the case. As with RRVARS.A$ and RVARS.A, the user should not
delete this DIM statement, even though he may not need data drive.

• C8OVARS.A(VARMAX.A) This array is used to poke variables into
controller memory using the C80 communication protocol. The size of
this array must be set to VARMAX.A. Unexpected results will occur
if this is not the case. As with the other arrays DIMensioned in
AMLECOMO.BAS, the DIM statement for C8OVARS.A should not be removed,
even though the C80 feature may not be needed.

• ON ERROR GOTO 0 AMLECOMM must install its own error handler when
active to trap communication errors. This will cancel any error
handler the user has established for his own program. AMLECOMM will
restore a single error handler for the user. The user changes the
two ON ERROR statements to point to his error handler. If no user
error handler is needed, then ON ERROR GOTO 0 statements are used.

Appendix G. Configuration Parameters for AMLECOMM G-3

G-4 58X7338

APPENDIX H. ADVANCE] COMMUNICATIONS

This appendix describes the communications support supplied by AML/Entry
Version 4 at an extremely technical level. Users of AML/Entry Version 4
should use AMLECOMM to perform communications with the controller,
because AMLECOMM handles all the details of the complex protocol. This
appendix should only be read by users wishing to rewrite or modify
AMLECOMM. Refer to chapter 8 for a high level discussion of the
AML/Entry Version 4 communications, including a discussion of AMLECOMM.

The communications interface supplied with AML/Entry Version 4 is for
the most part a low level interface at the machine language level. For
this reason much of the information in this chapter is written for a
reader with an understanding of machine language concepts.

Appendix H. Advanced Communications H-1

COMMUNICATIONS HARDWARE INTERFACE

There are two types of interfaces used to communicate with the
controller. The IBM Personal Computer communicates with the controller
using the RS-232 interface. The asynchronous communications protocol is
used with the following characteristics:

1. Full duplex transmission with a half-duplex (flip/flop) end-to-end
user protocol.

2. baud rate = 4800

3. parity = even

4. data bits = 7

5. stop bits = 2

AML/Entry only allows the IBM Personal Computer communications port
(COM1: or COM2:) to be configured, all other communications
characteristics are not configurable. The controller characteristics are
switch selectable. See the IBM Manufacturing Systems Specifications
Guide, 8577126 for the controller switch settings.

The second type of interface available is RS-422. The RS-422 interface
is provided to allow the controller to communicate to host computers.
The controller automatically selects an RS-422 interface by sensing the
cable type. This interface permits local operation between the
controller and a host separated by up to 4000 feet. The cable
effectively serves as a modem eliminator because:

1. "Transmit data" is wired to "receive data" at the other end.

2. "Data terminal ready" is wired to "data set ready" at the other end.

3. "Request to send" is wired to "clear to send" at each end.

II-2 58X7338

Rear view

[Dk0.040.0.000.0.007.000,10)

25 Pin connector

Controller Communications Connector

The 25 pin connector on the controller with the label Cl RS232C is the
connector for the communications interface. Some pins in the connector
have special meanings for RS-232 communications and some have special
meaning for RS-422. The cable you connect activates the correct
interface. For example, the RS-422 cable connects pin 18 in the
controller connector to ground which tells the controller to use the
RS-422 interface. Refer to Appendix F, "Communications Cable Wiring
Diagrams" on page F-1 for the cable wiring diagrams.

Appendix H. Advanced Communications H-3

COMMUNICATIONS PROTOCOL

The communications protocol used by the controller is a transaction
based protocol with the host controlling all transactions.

Transactions

A transaction consists of:

• An identifier

• A record

• An optional collection of identifiers, records, requests, and
responses.

Transactions are started by the host sending an identifier to the
controller. This starts the transaction process. After the transaction
has been started the identifiers are appended to the beginning of each
record. The only time an identifier is sent by itself is to start a
transaction.

If the controller does not receive a response to a transmission within 3
seconds it transmits again. After 3 attempts to transmit, the
controller sets an error condition LED (TE) on the control panel.

The communications Startup precedes any transaction. A transaction
begins with the start of transmission from the host. This can be either
a request that data be sent to the host or a command from the host for
the manipulator to do something. It may terminate normally, or
abnormally. At the end of a transaction, the controller remains in the
on-line state to accept further commands or requests from the host. It
stays in the on-line state until off-line is pressed, or the host drops
"data terminal ready".

Note: The on-line state is not to be confused with the On Line LED.
The On Line LED signals a condition that the controller is able to enter
the on-line state (line startup enabled).

H-4 58X7338

Identifiers• When the host communicates with the controller, the host can send one of
several types of records. Every record has an identifier associated
with it. The types of identifiers you can use are:

• Read (R) - the host requests status or variable data values.

• Execute (X) - the host directs the controller to perform a remote
function related to the operator control panel.

• New (N) Program - this identifier is used to start sending a
compiled application program to the controller.

• Data (D) - this identifies subsequent records of multi-record
transactions, such as an application program or reading variables
where more than 16 bytes are expected.

• End (E) - this identifies the end of data transmissions.

• Control (C) - the host wants the controller to alter the status of a
running program.

• Teach (T) - the host wants to move the manipulator, change a DO, or
change LINEAR, PAYLOAD, or ZONE.

• Present Configuration (P) - the host wants to change the present
configuration mode of the 7545-800S manipulator. This is not
allowed for the 7545 and 7547 manipulators.

1
id

One character

Identifier:
X - execute
R - read
N - program
D - data
E - end
C - control
T - teach
P - present configuration (7545-800S only)

Appendix H. Advanced Communications H-5

Records and Record format

The general format of a record is:

id bc data cs Cr Lf

A transaction is initiated by the transmission of an identifier. After
an acknowledgement is received, the body of the record is transmitted.
An acknowledgement is required for each record transmitted.

In the case of a transaction that consists of multiple records, all
subsequent records are sent with an identifier and the record together.
No acknowledgement should be expected between the ID and the record
until the initiation of a new transaction.

Identifier

The id is a single character that identifies the type of transaction
taking place.

Byte Count

The bc is two hexadecimal (hex) digits representing the length, in
bytes, of the data. It takes values of 01 to 10 (1 to 16 decimal).

Data

The data is 1 to 16 bytes of hexadecimal data. Each byte of data is
equivalent to two hex digits. All data is sent in hex digit pairs.

Check Sum

The cs is the checksum, which is not counted as part of the data. The
checksum is the modulo 256 of all the hex digit pairs in the data bytes.
For example, if the data that is being sent is '090A', to compute the
checksum you would:

1. Add the hex pairs.

09 + OA = 13

2. Take the remainder after dividing by 256.

13 modulo 256 = 13

3. The checksum is 13.

Note: A quick method for finding the checksum of only a few
records is to add up the hex pairs and take the last (low order) hex
pair of the sum for the checksum. That is the modulo 256 of the sum.

H-6 58X7338

Record Termination

To be able to process the record properly you have to know when the
record ends. It is very easy with AML/Entry to look for the carriage
return (Cr) character followed by the line feed (Lf) character. This is
how the controller indicates the end of the record. It is also how you
must indicate the end of the record to the controller.

Just remember, all records, except identifiers sent alone to start a
transaction, and control codes (Ack, Xoff, etc.) end with a carriage
return and a line feed.

Appendix H. Advanced Communications H-7

Data Rules

All data sent to the controller must conform to the following
conventions:

• All numeric data must be in hexadecimal.

All data must be transmitted as the hexadecimal representation of
the ASCII code for each byte.

For example, if you wanted to send the decimal number "20" to the
controller you would:

1. Convert 20 to hexadecimal.

20 = 14 hex

2. Convert each digit of the hex number to its ASCII code.

The ASCII code for 1 = "31"
The ASCII code for 4 = "34"

3. The actual data sent to the controller would be '3134'

4. Many computers automatically convert any character sent to an
asynchronous communications port to the correct ASCII code.
Check the documentation for your host computer to find out if it
automatically converts the data for you. If the host doesn't
convert the data, you must convert it. For example, IBM Basic
automatically does this conversion. Thus if the character
string "14" is sent to either COM1: or COM2:, then it is
automatically converted to the hex data '3134'.

Note: To make explanations easier and less confusing, all
examples in the remainder of this chapter assume that the
correct ASCII conversion is done before sending the data to the
controller. The examples show the correct data before
conversion to ASCII format, or in the case of received data,
after decoding the ASCII format.

• The ASCII Nul (hex 00) is ignored by the controller. The Nul
character allows you to pad data if you are using a host that cannot
send a single byte of data.

•

Data Representation

Numeric data returned by the controller is represented as either fixed
point data or floating point data.

1. Fixed point is four bytes long in two's complement notation (the
high order bit is the sign bit).

2. Floating point notation takes four bytes and is in the following
format:

a. The left most bit is the mantissa sign bit. The mantissa is
positive if the sign bit is 0 and negative if the sign bit is 1.

b. The next seven bits represent the exponent in two's complement
notation (the high order bit is the sign bit for the exponent).

c. The remaining 24 bits are the fractional mantissa. The mantissa
must be 0 or between 0.5 and 1; therefore for values other than
zero the first bit is always set to 1. Because this is a
fractional mantissa, each bit in the mantissa is a negative
power of 2.

X XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
Mantiss4 Exponent Fractional mantissa
sign bit -64 to 63 0, or 0.5 to 1

Note: All numeric data that corresponds to application variables
in controller memory are stored in floating point forma t. Thus,
whenever reading variables from an application in memory or writing
variables to an application in memory, the numeric data must be in
floating point format.

Appendix H. Advanced Communications H-9

Floating Point Examples

This section gives examples on how to convert numbers to and from the
floating point format.

Example 1.

To decode the hex number 06A0 0000 you would:

Hex number 06A0 0000
Binary 0000 0110 1010 0000 0000 0000 0000 0000

Mantissa
sign bit Exponent Fractional mantissa

0 0000110 101000000000000000000000

mantissa sign = 0, mantissa is positive
exponent = 4 + 2 = 6

number = mantissa x 2 raised to the exponent
-1 -3 6= (2 + 2) x 2 add exponents to multiply

= (2
5

+ 23)
= 32 + 8
= 40 decimal

Example 2.

To decode the hex number F8F0 0000 you would:

Hex number F8F0 0000
Binary 1111 1000 1111 0000 0000 0000 0000 0000

Mantissa
sign bit Exponent Fractional mantissa

1 1111000 111100000000000000000000

Mantissa sign = 1 - The mantissa is negative
Exponent sign = 1 - The exponent is negative-

and two's complement.

Exponent = 1111000 Take the complement of 1111000
0000111 add 1 giving
0001000

8 exponent (absolute value)
Exponent = -8

number = mantissa x 2 raised to the exponent

= (2
-1

+ 2
-2

+ 2
-3

+ 2
-4

) x 2
-8

add exponents

= (2

-9

2

-10

+ 2

-11

+2

-12

)
= .00019531 + .00097656 + .00048828 +.00024414
= -.0036621 decimal

H-10 58X7338

To convert decimal numbers to floating point format requires a different
process.

Example 3.

To convert 650.0 to floating point format you would:

Find the exponent by doing step 1.

1. In the "Powers Of Two Table" on page H-14, find the N with a value
that is just larger than the number to be converted. For 650.0, N
would be 10, which has a value of 1024. Ten is the exponent (exp)
to be used in the floating point format (bits 2 to 8).

The remainder of the procedure is an iterative process to determine the
fractional mantissa.

2. Find N in the table with a value just smaller or equal to the
difference. For the first time through, the difference is the
starting number. In this case N = 9 has a value of 512 which is just
smaller than 650.0. Find the number B, which when subtracted from
exp to get 9, as shown in the following formula:

exp-B = N Remember exp = 10 and N = 9. Thus:
10-B = 9

B = 1

• B = 1 shows that bit 1 of the mantissa is on.

3. Subtract the value chosen as being just smaller than the previous
difference, from the previous difference, getting a new difference.

650.0 - 512 = 138

Take the new difference and use it as the difference in step 2.
Continue this process until the difference is 0 or less than .001 x
the original number.

From the table, the value that is just less than or equal to
138 is 128 (N = 7).

Using the formula exp-B = N exp = 10 and N = 7
10-B = 7

B = 3
• B = 3 shows that bit 3 of the mantissa is on.

Appendix H. Advanced Communications H-11

Find the new difference and start again
138-128 = 10

From the table, the value that is just less than or equal to
10 is 8 (N = 3)

Using the formula exp-B = N exp = 10 and N = 3
10-B = 3

B = 7
• B = 7 shows that bit 7 of the mantissa is on.

Find the new difference and start again
10-8 = 2

From the table, the value that is less than or equal to
2 is 2 (N = 1)

Using the formula exp-B = N exp = 10 and N = 1
10-B = 1

B = 9
• B = 9 shows that bit 9 of the mantissa is on.

Find the new difference and start again
2-2 = 0

The difference is 0, the conversion is finished.

To get the hex digits

Mantissa sign bit = 0 The number is positive
Exponent = 0001010 The exponent (exp) is 10
Mantissa = 101000101000000000000000

I I I
I I I bit 9 on
1 1 bit 7 on
1 bit 3 on
bit 1 on

Put the fields together and convert to hex.
0000 1 1010 1 1010 1 0010 1 1000 1 0000 1 0000 1 0000

Hex = 0 A A 2 8 0 0 0
= 0AA28000

Example 4.

To convert -0.003663 to floating point format you would:

Ignore the sign and find the value in the "Powers Of Two Table" on
page H-14 that is just larger than .003663 (exp.).

The value is .0039062 exp = -8

•
H-12 58X7338

Find the fractional mantissa.
.0019531 .5_ .003663 N = -9

exp-B = N exp = -8 and N = -9
-8-B = -9

B = 1
• Bit 1 is on.

.003663 - .0019532 = .0017098

.00097656 5. .0017098 N = -10
exp-B = N exp = -8 and N = -10
-8-B = -10

B = 2
• Bit 2 is on.

.0017098 - .00097656 = .00073324

.00048829 5. .00073324 N = -11
exp-B = N exp = -8 and N = -11
-8-B = -11

B = 3
• Bit 3 is on.

.00073324 - .00048829 = .00024495

.00024414 � .00024495 N = -12
exp-B = N exp = -8 and N = -12
-8-B = -12

B = 4
• Bit 4 is on.

.00024495 - .00024414 = .00000081

.00000081 < .001 x .003663
The mantissa calculation is finished.

To get the hex digits:

Mantissa sign bit =
Exponent =

Mantissa =

1 The number is negative
1111000 The exponent (exp) is -8

in 2's complement
111100000000000000000000
1111
1111
Illbit 4 on
llbit 3 on
'bit 2 on
bit 1 on

Put the fields together and convert to hex.
1111 1 1000 1 1111 1 0000 1 0000 1 0000 1 0000 1 0000

Hex = F 8 F 0 0 0 0 0
= F8F00000

Appendix H. Advanced Communications H-13

Powers Of Two Table

Value (2
N

)N

16 65536
15 32768
14 16384
13 8192
12 4096
11 2048
10 1024
9 512
8 256
7 128
6 64
5 32
4 16
3 8
2 4
1 2
0 1

-1 0.5
-2 0.25
-3 0.125
-4 0.0625
-5 0.03125
-6 0.015625
-7 0.0078125
-8 0.00390625
-9 0.001953125

-10 0.0009765625
-11 0.00048828125
-12 0.000244140625
-13 0.0001220703125
-14 0.00006103515625
-15 0.000030517578125
-16 0.0000152587890625
-17 0.00000762939453125
-18 0.000003814697265625
-19 0.0000019073486328125
-20 0.00000095367431640625
-21 0.000000476837158203125
-22 0.0000002384185791015625
-23 0.00000011920928955078125
-24 0.000000059604644775390625

H-14 58X7338

Line Control Characters

Character I ASCII *

Ack

Cr

Eot

Lf

Nak

Nul

Xoff (DC3)I

Xon (DC1)I

* All values are in
hexadecimal

06

OD

04

OA

15

00

13

11

Data Line Control

The controller uses special ASCII characters to control transactions.
The line control characters allow the host and the controller to
acknowledge a transmission, etc. The line control characters used by
AML/Entry Version 4 are:

Ack Acknowledgement for a good transmission

C r Carriage return

Eot Reject data

Lf Line feed

Nak Error in transmission

N ul Fill Character

Xoff Not ready

Xon Ready

The ASCII characters for these line signals are shown in the table that
follows.

Appendix H. Advanced Communications H-15

For example, to send an Ack using IBM Basic, one would use

PRINT #1,CHR$(6);

(Assuming the communications port had been opened with file number 1).

The controller or host sends the Ack line control character under the
following conditions:

1. Received data has the correct checksum and parity.

2. Controller is in a state that allows it to accept another
request. The controller can delay sending the Ack up to 2
seconds.

3. The request is valid.

Note: All the previous conditions must be satisfied in order to
send an Ack.

The controller sends the Xoff line control character under the following
conditions:

1. Received data has the correct checksum and parity.

2. The request is valid.

3. Due to other conditions (motion required or in progress,
processing required) the request cannot be fulfilled
immediately.

Note: All the previous conditions must be satisfied in order to
send an Xoff.

If an.Xoff is sent, an additional response is sent within 30
seconds (Xon, or another Xoff or, Eot). For example, if the
manipulator has just been powered up and the return home command
is issued by the host, the controller responds with an Xoff signal
approximately every 25 seconds until Home is reached. The
controller then responds with an Xon signal.

Ack

Xoff

H-16 58X7338

The controller sends the Xon line control character under the following
conditions:

1. The last response transmitted was an Xoff.

2. If the Xoff was in response to a record identifier, a receipt
by the host of an Xon signals the host to transmit the body of
the record.

3. If the Xoff was in response to a command record, receipt of
Xon by the host means that the controller performed the
request and can accept another record or transaction.

Note: In case numbers 2 and 3 above, the Xon can be considered
by the host to be a positive response to the request.

The controller sends the Eot line control character under the following
conditions:

1. The received data is a valid request. However, due to a
condition in the controller, the process cannot be honored
(such as attempting to select an application if the
manipulator is currently running one, or attempting to return
home with manipulator power off, or if an error condition,
such as TE, DE, OT, etc, is present at the controller).

2. The received data is not a valid request (incorrect format, op
code, and so on).

The controller or host sends the Nak line control character under one of
the following conditions:

I. Incorrect checksum.

2. Bad parity.

Note: Up to 3 retries are permitted after which the controller
sets an error condition LED (TE) on the control panel.

Xon

Eot

Nak

Appendix H. Advanced Communications H-17

Nul

The Nul character is used as a fill character to allow host computers
that can not send a single byte to pad data until the data is the size
the host can handle. Nul characters are completely ignored by the
controller.

Communication Startup Sequence

1. The controller On-Line LED is lit.

2. The host raises "data terminal ready."

3. The host waits for the controller to raise "data set ready"; this
should happen immediately.

4. Startup is complete.

• If startup is complete, the operator control panel only responds to:

Manipulator Power On

Reset Error

Off-line (This drops the controller DTR at the end of a
transaction or immediately if no sequence is in process)

— Emergency Power Off

• The controller side of the cable should have RTS wrapped back to
CTS.

1I-18 58X7338

Record Descriptions

As we have described earlier in this chapter all data is communicated in
the form of records. There are eight basic types of records used by
AML/Entry. They are:

1. Read (R) Records - the host wants status or variable data values.

2. Execute (X) Records - the host wants the controller to perform a
remote function related to the operator control panel.

3. New (N) Program Record - this record is used to start sending a
compiled application program to the controller.

4. Data (D) Records - this identifies subsequent records as
multi-record transactions, such as an application program or reading
variables where more than 16 bytes are expected.

5. End (E) Records - this record indicates the end of a data transfer
transaction.

6. Control (C) Records - the host wants the controller to alter the
status of a running application program.

7. Teach (T) Records - the host wants to move the manipulator, change a
DO, or change LINEAR, PAYLOAD, or ZONE.

8. Present Configuration (P) Records - the host wants to change the
present configuration mode of the 7545-800S manipulator. This is
not allowed for the 7545 and 7547 manipulators.

The easiest way to learn each record format is to use the COMAID
program. By using option P, the communications records can be printed
on the screen. The detailed layout of each record type follows:

R - (Read) Record

Data returned from the controller in response to a R (read) record is
in D (data) record format.

Note: The controller does not send an Ack in response to a read
record. The requested data is immediately returned in a D -
record (for all read requests except R 80 - read specific program
variables). For R 80, an Ack is sent by the controller in
response to the read record. The host then sends a special D
record which contains the starting variable that is to be read and
the number of variables to read. The controller responds to this
with a D record.

Appendix H. Advanced Communications H-19

1 I 1
1 operand 1 CrLf 1

Two Two
characters characters

Read operand:

01 - Read
02 - Read

(why
03 - Read
04 - Read
08 - Read
10 - Read
20 - Read
40 - Read
80 - Read

machine status
reject status
the controller sent Eot)
robot type and micro code level
robot parameter table
current instruction address
DI/DO
all variable values
current position in pulses
specific variable values

Note: The read record may temporarily interrupt a running
application when the controller is responding to the host request.

R 01 - Read Machine Statue

Response to op-code 01 (read machine status) returns additional
hexadecimal codes in the data field of the D-record, as identified
below. •

H-20 58X7338

First byte of data field in D-record
80 - Servo error
40 - Power failure
20 - Overrun
10 - Over Time
08 - Transmission error
06 - AML/Entry error (the error code is in the second byte)
04 - Data error (the error code is in the second byte)

If the first byte contains 06 (AML/Entry error), the second byte
contains additional information about the error as listed below.

OA - Part number too small for pallet
OB - Part number too large for pallet
14 - Invalid index for a group
lE - Communications not established (unable to GET/PUT)
32 - Invalid index for FROMPT function
33 - Square Root of a negative number
34 - Invalid arguments for ATAN2 function

If the first byte contains 04 (data error), the second byte
contains additional information about the error as listed below.

00 - No data error present
01 - Bus error
02 - Memory test error
11 - Arithmetic error
12 - Programming error
13 - Invalid op Code
14 - Invalid data
15 - Invalid port number
17 - Stack error
18 - Address error
40 - Point out of work space

The functions provided by AML/Entry Version 4 limit the ability of the
compiler to detect run-time errors. Some errors occur only when the
application program is executing. If a run-time error is found, the DE
(data error) light comes on and execution of the application is
suspended.

The ability to determine the type of error is provided as part of the
read machine status transaction. In Version 4, the error code (06)
indicates that an AML/Entry error was encountered. If the first byte
returned is (06), the second byte contains the particular AML/Entry
run-time error code.

R 02 - Read Reject Status

Response to Op-code 02 (read reject status), or why the controller sent
Eot, have additional codes as identified below.

Appendix H. Advanced Communications H-21

10 - Record format error
15 - Invalid port number
20 - Undefined record
30 - UnacCeptable condition

Improper application startup sequence
31 - UnacOeptable condition

C-Record but no application
40 - Point out of workspace
50 - Insufficient Memory
51 - Invalid robot type
52 - Double select error
53 - Invalid application number
54 - C-Record format error
60 - Invalid identifier

sent. N record
70 - Xoff Time-Out (30 seconds)
74 - Invalid data
75 - Too much data
76 - Too little data
80 - Manipulator power off
AO - Xoff. Time-Out State
Al - Can not accept command (Xon State)
A2 - Communication operation not allowed (Xto or Wxo mode)
AA - Controller has gone off-line

R 03 - Read Micro-code Level and Machine Type

Response to op-code 03 (Read micro-code level and machine type) is a D
record of the following format:

D 06 1 00 I 00 I check CrLf 1

length two two four four zeros 2 HEX 2 ASCII
in HEX HEX HEX always digits chars
bytes digits digits digits returned 1 1

1 1 1 1 1
1 1 1 Check Carriage

Major Minor Machine Sum Return
Microcode Microcode Type and
Level Level Line

Feed

R 04 - Read Robot Parameter Table

Response to op-code 04 (read robot parameter table) is three D records,
each containing four pieces of configuration data. The format and
contents of the three records is as follows

H-22 58X7338

RECORD 1

D 10, 1	1 1 1 check 1 CrLf 1

length 8 HEX 8 HEX 8 HEX 8 HEX 2 HEX 2 ASCII
Digits Digits Digits Digits Digits Chars

1 1 1 1 1
Theta 1 Theta 2 Theta 1 Theta 2 Check
Arm Arm Max Max Sum
Length Length Pulse Pulse
(mm) (mm)

RECORD 2

i i i 1 i i i
D I 10 1 1 1 I check 1 CrLf

L 	[I 1 1 I I I

length 8 HEX 8 HEX 8 HEX 8 HEX 2 HEX 2 ASCII
Digits Digits Digits Digits Digits Chars

1
Roll Theta 1 Theta 2 Theta 1 Check
Motor Offset Offset Pulse Sum
+/- Max (Radians) (Radians) Rate
Pulse

RECORD 3

I I 1 I 1
1 D I 10 1 	1 I check 1 CrLf 1
1 I I 1 I i I 1 i

length 8 HEX
Digits

8 HEX
Digits

8 HEX
Digits

8 HEX
Digits

2 HEX 2 ASCII
Digits Chars

1 1 1 1 1
Theta 2 Roll Z-axis Z-axis Check
Pulse Motor Pulse Max. Sum
Rate Pulse Rate Stroke

Rate (mm)

R 08 - Read Current Instruction Address

Response to op-code 08 (read current instruction address) is a single D
which contains the current instruction address in 4 hex digits. By
converting this to decimal and looking at a listing generated by the
AML/Entry compiler, it is possible, to determine the source statement.

Note: All motion of the manipulator is performed by an internal
subroutine. If the current instruction address is read during motion or
immediately following motion, the controller will return the address of

Appendix H. Advanced Communications H-23

the internal subroutine, not the address of the actual PMOVE, DPMOVE,
XMOVE, GETPART, or ZMOVE that started the motion.

R 10 - Read DI/DO

Response to op-code 10 (read DI.DO) is three D records. The status of
the DI/DO is in hex format with two bytes (4 hex digits) for every 16
points of DI/DO installed on the system.

1. The first record contains the information on the first 16 bits of DI
and DO installed. The data is returned in the following format:

Data bytes 1-2 16 input ports.
Data bytes 3-4 16 output ports.

For example, if a "Read DI/DO" request is sent to the controller,
the following data is returned in the data field of the first
record.

800OFFOO

Breaking the data into fields:

8000 FF00
1 1
1 16 DO
16 DI

First data byte in hex
First data byte in binary

DI port

8
1000
1111
1234

1
0

0000
1111
5678

1
0

0000
1111
9111
012

1
0

0000
1111
1111
3456

DI port 1 is on.

2. The second D record contains the information on any additional DI
installed on the system. The first byte of the data field contains
the number of additional 16 point increments installed on the
system. The remaining data bytes contain the state of the points
with each bit representing one point.

3. The third D record is identical to the second record except it
contains information on the additional DO points installed on the
system.

Three records are always returned. If no additional DI/DO is installed,
the second and third records contain zero for the number of additional
increments installed, but they are still returned.

H-24 58X7338

R 20 - Read All Program Variables

Response to op-code 20 (read all program variables) is many D records.
Each D record contains 4 values (stored in floating point format)
representing 4 values of the user's application program. To determine
which values in the D records map to which user variables, you must
know how the compiler arranged them in the controller. This information
is supplied as an offset into the data for each variable. The offsets
are provided by the XREF program. See "XREF Program" on page 2-34 and
"XREF Program

°
 on page 4-89 for more on XREF.

R 40 - Read Current Position in Pulses

Response to op-code 40 (read current position in pulses), is a single D
record that contains 4 values representing the 01, 02, Z, and Roll axes.
Each value is a 6 hex digits long 2's complement number. See the IBM
Manufacturing System Specifications Guide for the number of pulses per
degree for the 01, 02, and Roll axes, and the number of pulses per
millimeter for the Z axis.

R 80 - Read Specific Program Variables

Response to op-code 80 (read specific program variables) is many D
records. Each D record contains 4 values (stored in floating point
format) representing 4 values of the user's application program. To
determine which values in the D records map to which user variables,
you must know how the compiler arranged them in the controller. This
information is supplied as an offset into the data for each variable.
The offsets ate provided by the XREF program. See "XREF Program" on
page 2-34 and "XREF Program" on page 4-89 for more on XREF.

This request requires that the host send the starting variable number
and number of variables to read. After starting the request by sending
a R identifier with an op-code of 80, the controller acknowledges the R
record. After which the host sends D record containing the data
outlined below.

vvvv I nnnn

Four Four
characters characters

The number of contiguous variables requested

Starting variable number

If the request can not be honored, the controller responds with an Eot
and sets the appropriate Eot code. For example, if the request extends
beyond the end of the partition, the controller sets the Eot code to
'76', "too little data" not enough available. When all of the requested

Appendix H. Advanced Communications H-25

data has been transmitted the controller sends an EG record to indicate
the end of the data.

C (Control) - Records

C - records allow you to control the execution of an application
program from the host computer. Format and op-codes for the C record
are outlined below.

1 operand I CrLf I
Two Two

characters characters
1
1
Control operands

Operands allowed in the C record are as listed below.

01 - Suspend program execution
02 - Restart program execution
04 - Execute Until Next Terminator
10 - Set debug address stop
20 - Reset controller
80 - Change controller variables

Op-codes 01, 02, 04, and 20 do not require further data from the host.
As soon as the op-code is received by the controller, the request is
performed (or if motion is being performed, the request is blocked until
the motion completes).

Op-code 10 requires further data to be sent to the controller. One
additional D record is that contains a 4 hex digit address indicating
the address where the debug breakpoint is to be installed. This is
gotten from the listing (.LST) file created by the AML/E compiler. Only
one debug breakpoint may be installed, and the installation of a new
breakpoint supersedes the previous breakpoint. Once the debug
breakpoint is established, the host must send an Xon to the controller
to enable data drive mode. If the controller is in the Xoff state when
a debug breakpoint is reached, the controller follows the rules for
complex state transitions (see "Complex State Transitions" on
page 8-10). When the controller encounters the debug breakpoint and is
in the Xon state, a Q record is sent from the controller to the host.
This D record contains only one byte to data in the body of that
identifies the record as a "debug encountered" message.

Op-code 20 performs the following actions:

• Clears all errors

• Resets all communication timers

• The current application selection is cancelled

H-26 58X7338

• Controller is placed in manual mode

Op-code 80 requires many D records to be sent to the controller. The
first D record is of the same format required for the R 80 request. It
contains the starting variable number and the number of variables to be
sent. After the controller responds with an Ack, then the values are
sent 4 at a time, in D record format until the proper number ov
variables have been sent. The controller will respond to each of the D
records with an Ack. After the last D record is sent, the host should
send an "EG".

Note: It is important to remember that the process is not
synchronized with the application program. Care must be exercised
that the data is not sent to the controller at a time that
adversely effects the application program.

•
Appendix H. Advanced Communications H-27

X (Execute) - Records

The format for the execute (X) appears as follows:

I I I

I

	operand 1 CrLf

Two Two
characters characters

1
1
Execute operands

The operands allowed in the X record are as follows:

11 Return Home
12 Recall Memory
13 Reset Error
20 Auto
22 Start Cycle
23 Stop Cycle
24 Stop and Mem
25 Step
31 Select Application 1
32 Select Application 2
33 Select Application 3
34 Select Application 4
35 Select Application 5

No further data is required from the host. When the X is sent to the
controller, it will respond with Xoff's until it can handle the request,
upon which it will send an Xon. Upon receiving the Xon, the host then
sends the op-code. If the request can be handled immediately, the
controller responds with an Ack, otherwise the controller will respond
with an Xoff every 25 seconds until the request has been fulfilled, and
then an Xon will be sent.

H-28 58X7338

N (Compiled Program) - Record

The N record tells the controller the name of an application program
and the partition to load the program into. The format for a N record
appears as:

N RECORD:

1
1 09 1 1* i 202 0202020202020 1 **
1

Two One 'Length-1' Two Two
chars char characters chars chars

1 1 of data 1 1 .
Length 1 Checksum Carriage return

of
data

Partition and line feed

* Equals the partition number for controller storage. The
compiler always puts a 1 for the partition. However, you
can specify a 1, 2, 3, 4, or 5 for the partition number.

** If a name is placed in the program name field, the
checksum must be computed for the record using modulo 256.

The program name is not used, therefore, the field is prefilled with
blanks. This does not mean that the name field can be deleted. The
name field must always be filled with something.

The compiled program generated by the AML/Entry compiler includes the
first record to be transmitted to the controller. The N-record
generated by ithe compiler defines partition 1 as the partition for
transmission to the controller. If you want any other partition, you
must alter the record where any * is located. No other part of the
record should be altered unless a name is to be transmitted.

The host starts the sequence by transmitting the N identifier and then
waits for an acknowledgement (it could be an Xoff followed by an Xon
sequence, or an Ack) from the controller. The host sends each record
along with a CrLf and waits for an Ack signal from the controller. When
the host has sent all the compiled program, it sends an E record to
indicate the end of the program data.

CrLf

Appendix H. Advanced Communications H-29

E (End) - Record

The AML/Entry compiler generates an End Good (EG) record to indicate
that the compiled program is good and should be loaded into memory. If
the controller receives an EN record, it unloads the partition that was
specified in the original 'N' record. The file can be altered to have
the controller unload a partition.

E RECORD:

status 1 CrLf

One Two
character characters

Carriage return + line feed

Operand:
G - data is good
N - unload the partition

D (Data) - Record

The data record is used to return information requested by a read
record. Because the data record is always in response to a request for
data and never to start a transaction, the identifier can be thought of
as being part of the record. If there is more data than can be put in
one record additional data records are sent following the first data
record. The D-record format is:

I D I be I data check CrLf

I I
I I
I I

One Two
char chars
id byte

count

'Length'
chars
requested
data

Two Two
chars chars
checksum Carriage return

line feed

H-30 58X7338

Responses to the 20, read variable, return a string of hex bytes in 0
record format. Example:

D100AA280000000000008B4000000000000E8

Breaking the number into data fields:

D 10 OAA28000 00000000 08B40000 00000000 E8
1 1
1 1
id byte

count

1 I I 1
1 1 1 1
1 I I csum
1 I variable 3
1 variable 2

variable 1
variable 0

See "Reading Program Variables" in this chapter for details on how to
interpret the data about the variables.

T (Teach) - Record

The generalized format of a T record is shown below. All types of teach
transactions use a T record with this structure. The contents of the
data field, however, will vary from transaction to transaction as
specified below.

1 1 1
1 length 1 data I check 1 CrLf I
1 • 	1 i 1

2 HEX (2x length) HEX 2 HEX 2 ASCII
digits digits digits chars

1 I 1 1
1 1 1 1

Length I Check Carriage
of Data Sum Return
data and

Line
Feed

Warning: Sending a Teach record will cause the manipulator to move
home if the manipulator has been taken off-line, moved, and placed
back on-line. Thus Teach records should not be used in conjunction
with the control panel.

A "T" is first sent to begin the Teach protocol. After the controller
responds, then the Teach record is sent. Only teaching a point requires
a second record to be sent. The second teach records have a "T"
prepended to the data.

Appendix H. Advanced Communications H-31

Motion Parameters

The three motion parameters (Linear, Velocity and Zone) are set using T
records. The data field for this type of teach record is composed of
three parts. The first is a single byte code (two HEX digits) that
correspond to the operation that is to be performed. The valid op-codes
corresponding to each of the three parameters are

X'68'- Modify Linear setting
X'69'- Modify Velocity setting
X'6A' - Modify Zone setting

The second part of the data field is the actual setting. This value
should be in HEX format and occupy one byte (two HEX digits).

The third part of the data field is the terminator. This terminator is
always X'3E' and immediately follows the op-code.

These parameters only affect motion that is invoked by Teaching a point.
They cannot be used to change the parameters of an executing
application.

Motion Control

The manipulator is instructed to move to a specific location using teach
records. While the general format of the record is the same, as that
for the motion parameters, the data portion of the record differs
slightly.

The data field for this type of teach record is composed of four parts.
The first is a single byte code (two HEX digits) that correspond to the
operation to be performed. The valid op-codes are

X'70' - X value
X'71' - Y value
X'72'- Z value
X'73' - Roll Value

The second part of the data field in a teach record is a code which
specifies the format of the data contained in the record. The codes and
their corresponding meanings are

X'21'- Floating Point
X'22'- Fixed Point

The third part of the data field in this teach record is the actual
value in the format specified by the previous byte of data.

The fourth part of the data field is the terminator. This terminator is
always X'3D' and immediately follows the actual value.

Multiple occurrences of this four part format may occur in a single
teach record, provided that the total number of bytes in the data field
does not exceed 16. Normally a teach operation to direct the motion of
the arm is done in two parts: the first record teaching the X and Y

H-32 58X7338

positions, the second teaching the Z and Roll positions. The second
(and any subsequent) Teach Records have a "T" prepended to the data.
After the last separator (the X'30' flagging the end of the roll value),
a terminator of X'3E' must be appended. After the X'3E', the checksum
and CrLf appear. For example, to move the manipulator to the point
(650,0,0,0), a "T" is first sent to begin the protocol. After which two
records are sent:

1 OE 17021 1 OAA28000 1 3D 17121 00000000 1 3D 1 C9 1 Crlf
t 	I I I

T I OF 1 7221 1 00000000 1 3D 1 7321 1 00000000 I 3D3E I DF I Crlf 1
I I I I I I I I

The controller will send an Ack to the first record. After the second
record is received, the motion is performed.

Changing Digital Outputs

In order to change a digital output, after sending a "T" to begin the
Teach protocol, a record is sent with the following format:

---.
fog opeN /c co sC 6n)9Pe2

°PEA/ T
„ Ap---/10:: k

1 oL 650 a 6 P ibt40 --+1 1 1 1 i 1
04 1 65 1 vnnn 1 nnnn 1 Check 1 CrLf 1 	It'---- A C KI 	, I I i I I 1 04056

046;424 4111$ -4'
The 7 n's hold the binary representation of the port nunfti. If the
port is to be turned on, then v is 1. If the port is to be turned off,
then v is O. The v field and n field together combine to give 2 Hex
digits.

P (Present Configuration) - Record

A P record is used to switch the present configuration of the 7545-800S
to either left or right mode. This class of records is only valid for
the 7545-800S manipulator. A "P” is first sent to the controller, which
responds with Xoff's every 25 seconds until the request can be honored.
Once it can be honored, an Xon is sent to the host. Upon receiving the
Xon, the host sends one of the following records:

FOR LEFT MODE: 014F4F CrLf
FOR RIGHT MODE: 014E4E CrLf

The first byte, 01, is the length of the data. The second byte is the
data that indicates whether the 7545-800S should be set to left mode or
right mode. A X'4F' signifies left mode, a X'4E' signifies right mode.
The third byte is the checksum. The last byte is CrLf.

Appendix H. Advanced Communications H-33

Controller-Initiated Communications

Controller-initiated communications allow the controller to send as well
as receive information from the host computer. This allows report
information to be sent to the host from the application program.
Examples of GET and PUT transactions are given in "Typical
Communications Sequences" on page H-36. This information could include
the items listed below.

• The number of parts produced.

• Error conditions.

• Completion of a cycle.

Controller-initiated communications use the AML/Entry commands GET and
PUT. For a detailed description of GET and PUT, refer to
Chapter 8, "Communications." The controller must be in the Xon State for
the GET and PUT commands to execute. If the controller is in the Xoff
State when the commands are encountered, the rules for complex state
transitions apply. See Chapter 8, "Communications" on page 8-1 for a
discussion of the Xoff state, Xon state, and complex state transitions.

PUT Transaction

When the PUT command is encountered, the controller sends a D - record
with the data in the format outlined below.

Operand I Parameters

Two Eight
characters characters

1 1
1 Starting variable number (four characters).
1 Number of contiguous variables to
1 be transmitted (four characters).
1

02 - PUT data to host

The host should respond to this record with an Ack. After sending the
Ack, the controller will proceed to send all the variables identified in
the first D record in subsequent D records. The host should Ack each
D from the controller if it is received with correct length, checksum,
and parity. After all the data has been sent, the controller will send
an "EG".

R-34 58X7338

GET Transaction

When the GET command is encountered, the controller sends a D record in
the format outlined below.

i 1
1 Operand 1 Parameters iI I 1

Two Eight
characters characters

1 1
1 Starting variable number (4 characters).
1 Number of contiguous variables to
I be transmitted (4 characters).
1

03 - Get host data

Once the GET is received, the host should send the requested variables
to the controller in D records. The controller will send an Ack for
each D record. After all the data has been sent, the host should send
an "EG" to the controller. If too little or too much data has been
sent, the controller will respond with an Eot, otherwise it will respond
with an Ack.

DEBUG Transaction

When a debug breakpoint is encountered, the controller sends a D record
in the format outlined below.

1 Operand 1

Two
characters

1
1
1
1
1

10 - Debug Breakpoint ID

The host should simply Ack this D record to complete the debug
breakpoint protocol. The controller will now be blocked. To continue
execution, first an Xoff should be sent to disable data drive. After
this has been done, a C 02 record will restart execution.

Appendix H. Advanced Communications H-35

Application Startup Sequence

This sequence is used to start an application from the host once the
system power has been turned on and the manipulator power is up.

Host Controller Explanation

The host system sends the controller an X identifier (hex
58) to indicate the start of an execute transaction. The X
tells the controller that the next thing sent is an X
record.

Xoff The controller always responds with an initial Xoff (hex
13) If the controller is able to accept the record, an
Xon (hex 11) is sent following the Xoff.

Xon The controller is able to accept the X record.

"11"CrLf

The host sends the return home operand '11' (hex 31, hex
31) to the controller followed by the Cr (hex OD) and the
Lf (hex OA) to indicate the end of the record.

Xoff

Xon

The controller returns home sending a Xoff every 25
seconds until home is reached and the return home command
is completed.

The controller sends an Xon to indicate the completion of
the return home command. This ends this transaction and
the controller waits for another identifier from the host.

"X" The host system sends the controller an X identifier (hex
58) to indicate the start of an execute transaction. The X
tells the controller that the next thing sent is an X
record.

Xoff The controller always responds with an initial Xoff (hex
13). If the controller is able to accept the record an
Xon (hex 11) is sent following the Xoff.

Xon The controller is able to accept the X record.

"31"CrLf The host sends the select application 1 operand '31' (hex
33, hex 31) to the controller followed by the Cr (hex OD)
and the Lf (hex OA) to indicate the end of the record.

 Ack The controller responds with an Ack (hex 06) to indicate
that the record was received correctly, and that it has
completed the command.

H-38 58X7338

Manipulator Stop Cycle Sequence

This sequence is used to stop the currently running application

Controller Explanation

The host system sends the controller an X identifier
(hex 58) to indicate the start of an execute
transaction. The X tells the controller that the next
thing sent is an X record.

 Xoff The controller always responds with an initial Xoff
(hex 13). If the controller is able to accept the
record, an Xon (hex 11) is sent following the Xoff.

 Xon The controller is able to accept the X record.

"23"CrLf The host sends the stop cycle operand '23' (hex 32,
hex 33) to the controller followed by the Cr (hex OD)
and the Lf (hex OA) to indicate the end of the record.

 Xoff The host sends an Xoff indicating that it received the
command.

 Xoff The controller goes to the end of the program sending
an Xoff every 25 seconds until the end of the program
is reached and the stop cycle command is completed.

 Xon The controller sends an Xon to indicate the completion
of the stop cycle command. This ends this transaction
and the controller waits for another identifier from
the host.

Host

"x"

Appendix H. Advanced Communications H-37

Reason For Data Error

This sequence is used to query the controller for the reason for a data
error.

Host Controller Explanation

"R" The host system sends the controller an R
identifier (hex 52) to start a read transaction.
The R tells the controller that the next thing
sent is an R record.

< Xoff The controller always responds with an initial
Xoff (hex 13). If the controller is able to
accept the record an Xon (hex 11) is sent
following the Xoff. If the controller is not
ready additional Xoffs are sent about every 25
seconds until the controller is ready.

Xon The controller is able to accept the X record.

"01"CrLf The host sends the read controller status
operand '01' (hex 30, hex 31) to the controller
followed by the Cr (hex OD) and the Lf (hex OA)
which indicates the end of the record.

"D02044044"CrLf The controller responds with a record with a D
to indicate a data record, the byte count (02),
the data (0440), the check sum (44), and the
CrLf to indicate the end of the record. The 04
in the data shows a data error, the 40 shows a
point out of work space error.

Ack The host sends an Ack (hex 06) to tell the
controller that the record was received
correctly.

< "EG"CrLf The controller responds with an E record to show
the end of the data. The record is as follows:
an E to show this is an E record, a G shows the
data is good, the CrLf shows the end of the
record.

Ack The host sends an Ack (hex 06) to tell the
controller that the record was received
correctly.

H-40 58X7338

"x"

The host system sends the controller an X identifier (hex
58) to indicate the start of an execute transaction. The X
tells the controller that the next thing sent is an X
record.

Xoff The controller always responds with an initial Xoff (hex
13). If the controller is able to accept the record an
Xon (hex 11) is sent following the Xoff.

Xon The controller is able to accept the X record.

"20"CrLf The host sends the auto operand '20' (hex 32, hex 30) to
the controller followed by the Cr (hex OD) and the Lf (hex
OA) which indicates the end of the record.

 Ack The controller responds with an Ack (hex 06) to indicate
that the record was received correctly, and that the
command has completed.

"X" The host system sends the controller an X identifier (hex
58) to indicate the start of an execute transaction. The X
tells the controller that the next thing sent is an X
record.

Xoff The controller always responds with an initial Xoff (hex
13). If the controller is able to accept the record an
Xon (hex 11) is sent following the Xoff.

Xon The controller is able to accept the X record.

"22"CrLf The host sends the start cycle operand '22' (hex 32, hex
32) to the controller followed by the Cr (hex OD) and the
Lf (hex OA) to indicate the end of the record.

 Ack The controller responds with an Ack (hex 06) to indicate
that the record was received correctly, and that the
command has completed.

Appendix H. Advanced Communications H-39

Reason For Data Error

This sequence is used to query the controller for the reason for a data
error.

Host Controller Explanation

"R" The host system sends the controller an R
identifier (hex 52) to start a read transaction.
The R tells the controller that the next thing
sent is an R record.

	 Xoff The controller always responds with an initial
Xoff (hex 13). If the controller is able to
accept the record an Xon (hex 11) is sent
following the Xoff. If the controller is not
ready additional Xoffs are sent about every 25
seconds until the controller is ready.

Xon The controller is able to accept the X record.

"01"CrLf The host sends the read controller status
operand '01' (hex 30, hex 31) to the controller
followed by the Cr (hex OD) and the Lf (hex OA)
which indicates the end of the record.

"D02044044"CrLf The controller responds with a record with a D
to indicate a data record, the byte count (02),
the data (0440), the check sum (44), and the
CrLf to indicate the end of the record. The 04
in the data shows a data error, the 40 shows a
point out of work space error.

Ack The host sends an Ack (hex 06) to tell the
controller that the record was received
correctly.

< "EG"CrLf The controller responds with an E record to show
the end of the data. The record is as follows:
an E to show this is an E record, a G shows the
data is good, the CrLf shows the end of the
record.

Ack The host sends an Ack (hex 06) to tell the
controller that the record was received
correctly.

H-40 58X7338

Program Transmit Sequence

4111 This sequence is used to send a compiled program to the controller.

Host Controller Explanation
"N “

The host system sends the controller an
N identifier (hex 4E) to indicate the
start of a program transmission
transaction. The N tells the controller
that the next thing sent is an N record.

 Ack The controller responds with an Ack (hex
06). This indicates to the host that
the record was received correctly.

"0911202020202020202011"C rLf The host sends the first record of the
compiled program with the data length
(09), the partition number (11), program
name (20), checksum (11), Cr (hex
OD), and the Lf (hex OA) to indicate the
end of the record.

 Ack The controller responds with an Ack (hex
06). This indicates to the host that
the record was received correctly.

"D02010102"CrLf The host sends the first record of the
compiled program with the identifier(D),
the data length (02), data (0101),
checksum (02), Cr (hex OD), and the Lf
(hex OA) which indicates the end of the
record.

 Ack The controller responds with an Ack (hex
06). This indicates to the host that
the record was received correctly.

Data record 2 > As many records as needed to transmit
the program are sent. Each record is
acknowledged by the host with an Ack
(hex 06).

"EG"CrLf

The host sends an E record with the
identifier E (hex 45), the G operand
(hex 47) to indicate the end of the data
and that the program compiled correctly
and should be loaded.

Ack The controller responds with an Ack (hex
06). This indicates to the host that
the record was received correctly. This
is the end of the program transmission.

Appendix H. Advanced Communications H-41

Unload a Partition

This sequence is used to unload a partition at the controller.

Host Controller Explanation

The host system sends the
controller an N identifier (hex
4E) to indicate the start of a
program transmission transaction.
The N tells the controller that
the next thing sent is an N
record.

 Ack The controller responds with an
Ack (hex 06). This indicates to
the host that the record was
received correctly.

"091 120202020202020201 1 "C rLf The host sends the first record
of the compiled program with the
data length (09), the partition
number (11), program name
(20), checksum (11), Cr (hex
OD), and the Lf (hex OA) to
indicate the end of the record.

 Ack The controller responds with an
Ack (hex 06). This indicates to
the host that the record was
received correctly.

"EN"CrLf The host sends an E record with
the identifier E (hex 45), the N
operand (hex 47) to tell the
controller to unload the
partition specified in the N
record.

 Ack The controller responds with an
Ack (hex 06). This indicates to
the host that the record was
received correctly. This is the
end of the program transmission.

H-42 58X7338

Put Transaction

A typical PUT host data transaction is provided below:

Host Controller Explanation

Controller must be in the Xon State.

"D0502vvvvrinnn"csCrLf When the application program encounters the
PUT command, it sends a D- record with byte
count (05), put op-code (02), starting
variable number (vvvv), number of continuous
variables (nnnn), check sum (cs), and
terminator (Cr,Lf).

Ack

Ack

Ack

The host acknowledges the D record.

The controller sends a D record with the
value for each of the variables.

The host acknowledges the D record.

The controller sends additional D records
until all the variables have been transmitted.
Each D record is Acked by the host.

The host acknowledges the D record.

D - record

D - record

"EG"CrLf When all the data has been
controller sends a E reco
contains the identifier (E),
and the terminator (Cr,Lf).

transmitted, the
rd. The record
an operand (G),

Xon

Ack

The host acknowledges the E
transaction.

record ending the

Appendix H. Advanced Communications H-43

Get Transaction

A typical GET host data transaction is given below:

Host Controller Explanation

Xon The controller must be in the Xon State.

"D0503vvvynnnn"csCrLf When the application program encounters
the GET command, it sends a D record with
the byte count (05), an operand (03), the
starting variable number (vvvv), the
number of variables (nnnn), the check sum
(cs), and the terminator (Cr,Lf).

D - record The host sends a D record containing the
variables requested by the controller.

 Ack The controller sends an acknowledgment of
the record.

D - record The host continues to send D records
until all the variables are transmitted.

Ack The controller acknowledges the D records
when received.

"EG"CrLf When all the data has been transmitted,
the host sends an E record with the
identifier (E), an operand (G), and the
terminator (Cr,Lf).

 Ack The controller sends an acknowledgment of
the E record, ending the transaction. If
too much or too little data is received
from the host, the controller responds
with an Eot with the status set to 75 or
76.

H-44 58X7338

Read Transaction

A typical read transaction is given below:

Controller Explanation

The host starts the transaction by sending a
R identifier

Xoff The controller always sends an Xoff first.

Xon The controller sends an Xon to acknowledge
that it is ready to receive the R record.

"80"C rLf

The host sends a record with the read
specific variables op code (80) and the
terminator (Cr,Lf).

 Ack The controller sends an acknowledgment of
the record.

"DO4vvvvrinnn"csCrLf The host sends a D record with the
identifier (D) the byte count (04), the
starting variable number (vvvv), the number
of variables to be read (nnnn), the check
sum (cs), and the terminator (Cr,Lf).

D record The controller responds with a D record
containing the variables.

The host acknowledges the D record.

 D record If additional D records are necessary, the
records are sent after each acknowledgement.

Ack

The host acknowledges each D record.

"EG"CrLf When all the data has been transmitted, the
controller sends an E record. The record
contains an identifier (E), an op-code (G),
and the terminator (Cr,Lf).

The host acknowledges the EG (end good)
record, ending the transaction.

Host

"R"

Ack

Ack

Appendix H. Advanced Communications H-45

Read Instruction Address

A typical read instruction address is outlined below.

Host Controller Explanation

The host starts the transaction by sending a R
identifier

The controller always sends an Xoff first.

The controller sends an Xon to acknowledge that
it is ready to receive the R record.

The host sends a record with the read instruction
address (08) op code, and the terminator (Cr,Lf).

” R ”

	 Xoff

Xon

"08"CrLf

"DO2dddd"csCrLf The controller responds with a D record with the
byte count (02), two bytes of data (dddd), the
check sum (cs), and the terminator (Cr,Lf). The
data is the current instruction address as
provided in the listing created by the AML/Entry
compiler.

The host acknowledges the record.

"EG"CrLf The controller sends an E record to indicate the

Ack

end of the data.
identifier (E), an
terminator (Cr,Lf).

The host acknowledges
transaction.

The record contains an
operand (G), and the

the E record ending theAck

H-46 58X7338

• Debug Transaction

A typical debug operation is outlined below.

Host Controller Explanation

The host starts the transaction by sending a
C identifier.

Xoff The controller always sends an Xoff first.

 Xon The controller sends an Xon to acknowledge
that it is ready to receive the remainder of
the C record.

"10"CrLf The host sends the remainder of the record
with the Set Debug Stop (10) op code and the
terminator (Cr,Lf).

Ack The controller sends an acknowledgment of the
record.

"DO2xxxx"csCrLf

The host sends as a D record with the
identifier (D), the byte count (02), the hex
address for the stop code (xxxx), and the
terminator (Cr,Lf).

 Ack The controller sends an acknowledgment when
the stop code is installed.

Xon The host sends an Xon to place the controller
in the Xon State (able to initiate
communications).

"D011010"CrLf When a Stop Code is encountered, the
controller sends a D record with the byte
count (01), one byte of data (10), the check
sum (10), and the terminator (Cr,Lf).

Ack

The host acknowledges the D record.

 "EG"CrLf The controller sends an E record containing
an E to indicate that this is an E record, a G
to denote that the data is good, and the
terminator (Cr,Lf).

The host acknowledges the E record, ending
the transaction.

Ack

Appendix H. Advanced Communications H-47

Write Controller Data Transaction

A typical write transaction is given below:

Host Controller Explanation

"C" The host starts the transaction by sending a C
identifier.

 Xoff The controller always sends an Xoff first.

 Xon The controller sends an Xon to acknowledge that
it is ready to receive the R record.

"80"CrLf

The host sends the remainder of the record with
the op-code (80) and the terminator (Cr,Lf).

Ack The controller sends an acknowledgment of the
record.

"DO4vvvvnnnn"csCrLf The host sends a D record with the identifier
(D), the byte count (04), the starting variable
number (vvvv), the number of variables to be
read (nnnn), and the terminator (Cr,Lf).

Ack The controller sends an acknowledgment of the
record.

D-record

The host sends a D record containing the
variables requested by the controller.

Ack The controller sends an acknowledgment of the
record.

The host sends as many additional D records as
required to send the requested data.

Ack The controller sends an acknowledgment of each
additional record

D-record

"EG"CrLf When all the data has been transmitted, the host
sends an E record. The record contains the
identifier (E), an operand (G), and the
terminator (Cr,Lf).

Ack The controller sends an acknowledgment of the E
record. This ends the transaction.

H-48 58X7338

Example Application Sequence

•
Host Controller Explanation

"C" The first step of the application is using
host-initiated communications to send the
computer-generated points to the controller.

The host starts the transaction by sending a C
identifier.

 Xoff The controller always sends an Xoff first.

 Xon The controller sends an Xon to acknowledge that it
is ready to receive the C record.

"80"CrLf

The host sends the remainder of the record with the
op-code (80), and the terminator (Cr,Lf).

 Ack The controller sends an acknowledgment of the
record.

"D040010000818"CrLf The host sends a D record with the identifier (D)
the byte count (04), the starting variable number
(0010) , the number of variables (from the XREF
program) to be sent (0008), and the terminator
(Cr,Lf).

Ack The controller sends an acknowledgment of the
record.

"D1003A0000001800000
000000000000000024" C r Lf > The host sends a D record containing the

identifier (D) the byte count (10), the first four
variables(03A...), the check sum (24), and the
terminator (Cr,Lf).

Ack The controller sends an acknowledgment of the
record.

" D1003A0000003A 00000
000000000000000046" C r Lf > The host sends a D record containing the

identifier (D) the byte count (08), the final four
variables(03A...), the check sum (46), and the
terminator (Cr,Lf).

Ack The controller sends an acknowledgment of each
additional record

"EG"CrLf The host sends a E record. The record contains
the identifier (E), the op-code (G), and the
terminator (Cr,Lf).

Appendix H. Advanced Communications H-49

Ack The controller sends an acknowledgment of the E
record. This ends the write data transaction for
the host. The host then sends the controller a
signal using a DO point. This allows the
application program to start.

Note: The DO signal is used by this
application example only. It is not a
requirement of the communications protocol.

Xon > The host sends the controller an Xon to enable the
controller to execute controller-initiated
communications.

	"D05030015000119"CrLf
When the application program encounters the GET
(LOC_TO_CARD) command, it sends a D record with
the byte count (05), an operand (03), the starting
variable number (from the XREF program) (0015), the
number of variables (0001), the check sum (15), and
the terminator (Cr,Lf).

The host sends a D record containing the byte
count (04), the variable (88C...), the check sum
(50), and the terminator (Cr,Lf).

 Ack The controller sends an acknowledgment of the
record.

"EG"CrLf The host sends a E record with the identifier (E),
operand (G), and the terminator (Cr,Lf).

< Ack The controller sends an acknowledgment of the E
record ending the transaction. If the incorrect
amount of data is received from the host, the
controller responds with an Eot with the status set
to 75 or 76.

	"D05030020000225"CrLf
When the application program encounters the GET
(INSTRS) command it sends a D record with the byte
count (05), an operand (03), the starting variable
number (0020), the number of variables (0002), the
check sum (25), and the terminator (Cr,Lf).

"D0488C8000050"CrLf

H-50 58X7338

')0801800000
0180000002"CrLf The host sends a D record containing the byte

count (08), the values for each variable (018...),
the check sum (02), and the terminator (Cr,Lf).

 Ack The controller sends an acknowledgment of the
record.

"EG"CrLf The host sends a E record with the identifier (E),
operand (G), and the terminator (Cr,Lf).

 Ack The controller sends an acknowledgment of the E
record ending the transaction. If too much or too
little data is received from the host, the
controller responds with an Eot with the status set
to 75 or 76 respectively.

< "D05030020000225"CrLf
Each time the program encounters the GET (INSTRS)
command, it sends a D record with the byte count
(05), an operand (03), the starting variable number
(0020), the number of variables (0002), the check
sum (25), and the terminator (Cr,Lf).

"D0800000000
0000000000"CrLf The host sends a D record containing the byte

count (08), the values for each variable (000...),
the check sum (00), and the terminator (Cr,Lf).
When the application program receives zero for the
first value it ends the loop.

 Ack The controller sends an acknowledgment of the
record.

"EG"CrLf The host sends a E record with the identifier (E),
an operand (G), and the terminator (Cr,Lf).

< Ack The controller sends an acknowledgment of the E
record, ending the transaction. If too much or too
little data is received from the host, the
controller responds with an Eot with the status set
to 75 or 76. This ends this application sequence.

•
Appendix H. Advanced Communications H-51

INDEX

1 Special Characters 1

--II A-108
--%P A-109
? (Recall) 3-48
? primary command A-107

a structural overview 4-2
A, line command 3-18, 3-22, A-2
ABS 4-50, A-3
Ack H-15, H-16
actual parameter assignment
restrictions 4-64
additional point 6-22
additional topics for program
enhancement 4-74
host communications 4-87
pallet 4-74
region 4-82

aggregate constants 4-35
AML/E Entry Run-Time Errors 8-23
AML/Entry commands 4-6

abs 4-6, A-3
atan 4-6, A-4
atan2 4-6, A-5
BRANCH 4-7, 4-24, A-8
BREAKPOINT 4-7, 4-24, A-9
Commands That Allow Expressions 4-54
COMPC 4-7, A-17
cos 4-6, A-19
counter 4-6, A-20
cstatus 4-6, 4-7, 4-17, A-22
DECR 4-7, A-26
DELAY 4-7, 4-8, A-29
DPMOVE 4-7, 4-8, A-30
end 4-6, A-32
frompt 4-6, A-35
GET 4-7, 4-87, A-36
GETPART 4-7, 4-9, 4-77, A-38
GRASP 4-7, 4-9, A-40
group 4-6, 4-45, A-41
GUARDI 4-7, 4-18, A-43
INCR 4-7, A-46

ITERATE 4-7, 4-24, A-48
LEFT 4-9, A-50
LINEAR 4-7, 4-11, A-51
mstatus 4-6, 4-7, 4-19, A-56
new 4-6, A-58
NEXTPART 4-7, 4-77, A-59
NOGUARD 4-7, 4-20, A-61
pallet 4-6, A-62
PAYLOAD 4-7, 4-11, A-65
PMOVE 4-7, 4-12, A-67
PREVPART 4-7, 4-78, A-68
pt 4-6, A-71
PUT 4-7, A-72
region 4-6, A-76
RELEASE 4-7, 4-12, A-79
RIGHT 4-13, A-81
SETC 4-7, A-83
SETPART 4-7, 4-78, A-85
sin 4-6, A-87
sqrt 4-6, A-88
static 4-6, A-89
subr 4-6, A-90
tan 4-6, A-92
TESTC 4-7, A-93
testi 4-6, 4-7, 4-20, 4-25, A-94
testp 4-6, 4-7, 4-78, A-96
trunc 4-6, A-98
WAITI 4-7, 4-20, A-99
WHERE 4-7, 4-21, A-100
WRITEO 4-21, A-101
WRITEP 4-7
XMOVE 4-7, 4-13, 4-84, 4-85, A-102
ZMOVE 4-7, 4-13, A-104
ZONE 4-7, 4-13, A-105

AML/Entry diskettes 2-10, 2-38
AML/Entry language programs 2-10
AML/Entry menu 2-23, 7-16, 7-17, 7-20

option 0 (return to DOS) 2-24
option 1 (edit/teach) 2-25
option 2 (compile) 2-26
option 3 (load) 2-28
option 4 (unload) 2-29, 7-14
option 5 (set system
configuration) 2-30

option 6 (set name and options) 2-32
option 7 (communicate with
controller) 2-33

option 8 (xref) 2-34
AML/Entry messages

AMLECOMM Error Messages B-60, B-66

Index X-1

COMAID Error Messages B-60
error messages without numbers B-1
messages with error numbers B-47

AML/Entry reserved words 4-6
AML/Entry user subroutines 4-61
AML/Entry utility programs 2-38

AMLECOMM Modules 2-38
OFFSET.EXE 2-38
75XXexX.AML 2-38
800S-exX.AML 2-38

AML/Entry Version 4
application program 4-2
beginning and ending program 4-3
comments 4-2
definition operator 4-5
identifier 4-4
keyword/command 4-5
line number 4-4
statement delimiter 4-5

AMLECOMM 8-30, G-1
BUFFER.A$ 8-51
Calling AMLECOMM 8-36
Configuration Parameters 8-34
Control Operation 8-46, 8-47
Data Drive Operation 8-47
Download Operation 8-45
Execute Operation 8-41
Initialization 8-40
Initialization Parameters 8-34
Installation 8-31
Introduction 8-30
Line Numbers 8-32
Opening COMM port 8-40
Read Operation 8-43
System Files 8-30
Tabular Listing 8-38
Teach Operation 8-45, 8-46
Unload Operation 8-44
Using the Compiler 8-32, 8-33
Using the Interpreter 8-32, 8-33

AMLECOMM Modules 2-38
AMLECOMO.BAS G-1
configuration parameters G-1

AMLECOMO.BAS G-1
appl 7-22, 7-25, 7-26
application program comparison 5-4
application program starting-automatic
mode 7-25
application startup sequence H-38
Arithmetic Functions 4-50

ABS(exp) 4-50
ATAN(exp) 4-50
ATAN2 4-50
COS 4-51
CSTATUS 4-52
FROMPT 4-52

MSTATUS 4-52
SIN 4-52
SQRT 4-52
TAN 4-53
TESTI 4-53
TESTP 4-53
TRUNC 4-53

ASCII characters H-15
Ack H-15
Cr H-15
Eot H-15
Lf H-15
Nak H-15
Nul H-15
Xoff H-15
Xon H-15

asynchronous communications 8-2, H-2
ATAN 4-50, A-4
ATAN2 A-5
auto key 7-6, 7-25, 7-26
autoinit 2-10, 2-12, 2-14, 2-15, 2-16,
2-17
automatic operation 7-24
AUX 2-18

I B

B, line command 3-18, 3-22, A-7
backspace key 3-6
baud rate

baud rate 8-2, H-2
data bits 8-2, H-2
full duplex 8-2, H-2
parity 8-2, H-2
stop bits 8-2, H-2

beginning and ending your program 4-3
BRANCH 4-24, 4-26, A-8
breaking data into fields H-24
BREAKPOINT 4-24, 4-26, A-9
byte count H-6

1 C

C, line command 3-22, A-11
CANCEL 3-57, A-12
CAPS 3-58, A-13
CC, line command 3-22, A-14
CHANGE 3-36, A-15
changing manipulator arm mode 6-29
check sum H-6

X-2 58X7338

Circular Motion 4-55
clearing error conditions 7-27
coarse movement 6-17
Column Number of a Part in a
Pallet 4-57

COMAID 2-33, 8-14
C Option 8-19
D Option 8-17
Debugging AML/E Applications 8-23
DOS Command Line 8-21
F Option 8-20
L Option 8-15
P Option 8-14
R Option 8-15
T Option 8-20
U Option 8-15
X Option 8-16

command input 3-30
command pending message 3-11, 3-12
Commands That Allow Expressions 4-54
comments 4-2
communication commands

GET A-36
PUT A-72

communication startup sequence 8-3,
H-18

data terminal ready 8-3, H-18
Communication with controller 2-33
communications 2-4, 8-1

AMLECOMM 8-30
asynchronous communication 8-2, H-2
COMAID 8-14
Communication Capabilities 8-4
communication startup sequence 8-3,
H-18
communications hardware
interface 8-2, H-2

communications protocol H-4
controller communications
connector 8-3, H-3

Data Drive Mode 8-8
data line control H-15
interface 8-2, H-2
reading program variables H-25
record descriptions H-19
typical communications
sequences H-36

communications hardware interface 8-2,
H-2
communications protocol H-4
communications sequences H-36
COMPC 4-19, 4-42, 4-54, A-17
compile and load application
program 7-16
with a fixed disk PC 7-16
with a PC 7-16

with a PC/AT 7-17
compiler

.ASC File 2-26, 2-27

.LST File 2-27

.SYM File 2-27
--%I include file 4-58, A-108
--%P page command 4-59, A-109
AUX 2-18
batch program example 2-37
compiler directive 4-58, 4-59
compiler errors 2-26
COM1 2-18
COM2 2-18
CON 2-18
Converting AML/E Program 2-26
displayed information 2-26
DOS batch support 2-36
error level 2-36
Include Files (--%I) 4-58
invoking the compiler 2-36
LINE 2-18
listing file 2-27
Load 2-36
LPT1 2-18
NUL 2-18
Page Ejects (--%P) 4-59
phase messages 2-26
PRN 2-18
Reading Input File 2-26
set program name and options 2-32
symbol file 2-27
USER 2-18
Writing .ASC File 2-26

compiler directive 4-58
--%I A-108
--%13 A-109

compiler errors 2-26
compiler phase messages 2-26
COM1 2-18
COM2 2-18
CON 2-18
Condition 1 (teach) 6-10
Condition 2 (Teach) 6-10
Condition 3 (Teach) 6-11
Condition 4 (Teach) 6-11
Condition 5 (Teach) 6-13
Configuration Utility menu 2-30
constants 4-31, 5-13

aggregate constants 4-35
declaring constants 4-31
global constants 4-32
global constants vs. local
constants 4-32
local constants 4-32
using constants 4-32
using global constants 4-34

Index X-3

using local constants 4-33
using the ITERATE with
aggregates 4-35

contrast and brightness 2-5
control key 3-6
control keys 3-8

Ctrl- 3-8
Ctrl-End 3-8
Ctrl-PgUp 3-8

control lights 2-9
control panel 7-3
control panel keys 7-3

auto 7-6
gripper close 7-5
gripper open 7-5
home 7-11
manip power 7-5
manual 7-6
memory 7-4
o.r. reset 7-9
off line 7-6
on line 7-6
power 7-3
rapid 7-7
recall memory 7-5
reset error 7-5
return home 7-5
roll - 7-9
roll + 7-9
start cycle 7-7
step 7-7
stop 7-3
stop and mem 7-7
stop cycle 7-7
THETA 1- 7-8
THETA 1+ 7-8
THETA 2- 7-8
THETA 2+ 7-8
Z down 7-6
Z up 7-6

control switches 2-9
controller application program
controller communications

controller states 8-8
Data Drive Example 8-11
Data Drive Mode 8-6
DEBUG transaction H-35
GET 4-87
GET transaction H-35
PUT 4-88
PUT transaction H-34
Use with Comaid 8-17
using AMLECOMM 8-47

controller communications
connector 8-3, H-3

controller initiated
communications 4-87, H-34
controller storage management 7-14
controller switches and lamps 7-2
controlling digital output from
teach 6-28
coordinates 6-19
copying DOS and AML/Entry shipped
diskettes on to work diskettes 2-12
copying the AML/Entry diskettes on fixed
disk drives 2-15
COS 4-51, A-19
COUNTER commands 4-41
counters 4-39, A-20

DECR 4-41
GROUP 4-45
INCR 4-41
PT's defined in terms of
counters 4-44
SETC 4-41
TESTC 4-43
using counter statements 4-43

cr-carriage return H-15
Creating Program screen 7-20
creating self-booting AML/Entry
diskettes 2-10

CSTATUS
Ctrl-

4-17,
3-8

4-52, A-22

Ctrl-End
Ctrl-PgUp

3-8
3-8

cts-clear to send 8-3, H-18
cursor 2-5
cursor keys 2-6

D, line command 3-15, A-24
data H-6

4-2 data rules H-8
Data Drive Mode 8-6, 8-8

controller states 8-8
example 8-11
transitions between states 8-9

Data Errors 8-23
data line control H-15
data representation H-9
data set ready 8-3, H-18

cts-clear to send 8-3, H-18
rts-request to send 8-3, H-18

data terminal ready 8-2, 8-3, H-2, H-18
DD, line command 3-15, A-25
DE-data error 7-5
DEBUG transaction H-35, H-47

X-4 58X7338

Debugging AML/E Applications 8-23
Control Requests 8-26
Read Requests 8-23

declarations 4-30
declaring constants 4-31
declaring variables 4-38
using declarations 4-30

declaring aggregate constants 4-35
declaring constants 4-31
declaring variables 4-38
DECR 4-41, A-26
define global data types 5-10
define global subroutines 5-14
definition operator 4-5
DEL 3-56, A-28
Del key 3-7
DEL, primary command 2-19
DELAY 4-8, A-29
description of a pallet 4-74
design application program

constants 5-13
define global data types 5-10
define global subroutines 5-14
digital input and output 5-11
gripper subroutines 5-18
initialization subroutine 5-22
main subroutine 5-24
movement subroutine 5-17
parts handling subroutines 5-19
taught points 5-10
utility subroutines 5-14
variables 5-13

development of user subroutines 4-61
device name 2-17
digital input and output 5-11
disk operating system (DOS) 2-10
diskcopy 2-17
diskettes 2-11, 2-19
display 2-3, 2-5

contrast and brightness controls 2-5
cursor 2-5

displayed information 2-26
DOS (XREF program) 2-34
DOS batch support 2-36
DPMOVE 4-8, A-30
drive door 2-8

I E

edit/teach 2-25
editor

? 3-48
exiting the editor 3-10

keyboard usage for the editor 3-4
set program name and options 2-32

editor commands
? 3-48
CANCEL 3-57
CAPS 3-58
CHANGE 3-36
DEL 3-56
FILES 3-46
FIND 3-32
GETFILE 3-52
LOCATE 3-42
PRINT 3-54
PUTFILE 3-53
RENAME 3-50
SAVE 3-44

editor exercises 3-11
Editor File Sizes 3-1
editor function key settings 3-4
editor help screens 3-4
editor special key 3-6

backspace key 3-6
control key 3-6
enter key 3-6
PrtSc key 3-6
shift key 3-6
tab key 3-6

END A-32
end key 3-7
enter key 2-6, 3-6
entering known coordinates from the
keyboard 6-19
Eot H-17
error LEDS 7-3

DE-data error 7-5
OR-overrun 7-4
OT-over-time 7-4
PF-power failure 7-4
SE-servo error 7-4
TE-transmission error 7-4

error level 2-36
example batch program 2-37
example of a subroutine with formal
parameters 4-63
example of palletization 4-79
exercises for teach mode 6-14
exiting the editor 3-10
Expressions 4-48

Arithmetic Functions 4-50
ABS(exp) 4-50
ATAN(exp) 4-50
ATAN2 4-50
COS 4-51
CSTATUS 4-52
FROMPT 4-52
MSTATUS 4-52

Index X-5

Fl 6-5
F10 6-5
F2 6-5
F3 6-5
F4 6-5
F5 6-5
F6 6-5
F7 6-5
F8 6-5
F9 6-5

SIN 4-52
SQRT 4-52
TAN 4-53
TESTI 4-53
TESTP 4-53
TRUNC 4-53

Circular Motion Example 4-55
Commands That Allow Expressions 4-54
DI as Integers Example 4-56
Precision 4-39
Round-off Error 4-39
Row and Column of a Part in a Pallet
Example 4-57

F

FILE and ?, primary commands 3-46
file types

.AML 2-19

.ASC file 2-28

.LST 2-19, 2-27

.SYM 2-19, 2-27
filename 2-17
files 2-17, A-33
FIND, primary command 3-32, A-34
Fixed diskettes 2-15
floating point examples H-10
flow-of-control commands 4-23

BRANCH 4-24
BREAKPOINT 4-24
COMPC 4-42, A-17
ITERATE 4-24
Labels 4-23
TESTI 4-25
using flow-of-control commands 4-26

formal parameter names
restrictions 4-64
formal parameters 4-79
formal parameters in subroutines 4-63
frame of reference 4-82
FROMPT 4-21, 4-52, A-35
full screen editing 3-1
function key settings, editor 3-4

Fl HELP 3-5
F10 BOTTOM 3-5
F2 RESHOW 3-5
F3 RESET 3-5
F4 FIND 3-5
F5 CHANGE 3-5
F6 TEACH 3-5
F7 RECALL 3-5
F8 EXIT 3-5
F9 TOP 3-5

function keyboard usage, teach
exiting DO control (F6) 6-9

read DI/DO points (F5) 6-8
set motion parameters (F2) 6-9
setting motion parameters for
safety 6-8

Functions 4-50
ABS(exp) 4-50
ATAN(exp) 4-50
ATAN2 4-50
COS 4-51
CSTATUS 4-52
FROMPT 4-52
MSTATUS 4-52
SIN 4-52
SQRT 4-52
TAN 4-53
TESTI 4-53
TESTP 4-53
TRUNC 4-53

G

GET 4-87, A-36
GET transaction H-35, H-44
GETFILE 3-52, A-37
GETPART 4-9, 4-77, A-38
getting to the editor from the main
menu 3-9
global constants 4-32
global constants vs.local
constants 4-32

good program structure 5-1
use blank lines 5-2
use comments 5-2
use declarations 5-1
use expressions 5-2
use indentations 5-1
use names 5-2
use subroutines 5-1

GRASP 4-9, A-40
gripper close key 7-5
gripper open key 7-5

X-6 58X7338

gripper subroutines 5-18
GROUP 4-45, 5-13, A-41
GUARDI 4-18, A-43

H

handling diskettes 2-20
help screens, editor 3-4
home key 3-7, 7-4
host communications 4-74, 4-87

communications sequences H-36
Control Request 8-19, 8-46, 8-47,
H-26
data drive 4-87
data reporting 4-87
Download Request 8-4, 8-15, 8-45,
H-29

Execute Request 8-5, 8-16, 8-41,
H-28
Present Configuration Request H-33
Read Request 8-4, 8-15, 8-43, H-19
Teach Request 8-6, 8-20, 8-45, 8-46,
H-31
Unload Request 8-4, 8-15, 8-44
variable identification 4-89
XREF program 4-89

execute H-5
new H-5
Present Configuration (p) H-5
read H-5
Teach (T) H-5

in-use light 2-8
Include file compiler directive A-108
Include Files (--%I) 4-58
including comments 4-2
INCR 4-41, A-46
indexing 4-46
information about primary commands 3-30
initialization subroutine 5-22
Ins key 3-7
inserting diskettes 2-11
interface

RS-232 8-2, H-2
RS-422 8-2, H-2

invoking the compiler 2-36
/B batch mode operation 2-36
/E aborts compile 2-36
/H hard copy report 2-36
/L listing file 2-36
/S symbol file 2-36

ITERATE 4-24, 4-35, 4-54, A-48
ITERATE to repeat a subroutine 4-70

I KI

I

I, line command 3-13, A-45
IBM Manufacturing System teach
responses 6-10
Condition 1 (manipulator power
off) 6-10

Condition 2 (Manipulator Power
Off) 6-10

Condition 3 (Exit teach and
Editor) 6-11
Condition 4 (Exit teach) 6-11
Condition 5 (Exit teach) 6-13

IBM PC 2-2
in-use conditions 2-2
storage conditions 2-2

IBM PC configuration 2-3
IBM PC requirements 2-2
identifier 4-4
identifiers H-5, H-6

Control (C) H-5
data H-5
end H-5

key functions, control panel 7-3
auto 7-6
gripper close 7-5
gripper open 7-5
home 7-11
manip power 7-5
manual 7-6
memory 7-4
o.r. reset 7-9
off line 7-6
on line 7-6
power 7-3
rapid 7-7
recall Memory 7-5
reset error 7-5
return home 7-5
roll - 7-9
roll + 7-9
start cycle 7-7
step 7-7
stop 7-3
stop and mem 7-7
stop cycle 7-7
THETA 1- 7-8

THETA 1+ 7-8
THETA 2- 7-8
THETA 2+ 7-8
Z down 7-6
Z up 7-6

keyboard 2-3, 2-6
Alt 2-7
Ctrl 2-7
cursor keys 2-6
Del 2-7
enter key 2-6
function keyboard 2-6
numeric keypad 2-6
typewriter keyboard 2-6

keyboarding known coordinates
keys 2-6
keyword/command 4-5
keywords 4-6

abs 4-6
atan 4-6
atan2 4-6
cos 4-6
counter 4-6, A-20
cstatus 4-6
end 4-6, A-32
frompt 4-6
group 4-6, A-41
mstatus 4-6
new 4-6, A-58
pallet 4-6, A-62
pt 4-6, A-71
region 4-6, A-76
sin 4-6
sqrt 4-6
static 4-6, A-89
subr 4-6, A-90
tan 4-6
testi 4-6
testp 4-6
trunc 4-6

I L

labels 4-23
language structure 4-2
LEDS, control panel 7-3

DE-data error 7-5
home 7-4
memory 7-4

OR-overrun 7-4
OT-over-time 7-4
PF-power failure 7-4
SE-servo error 7-4
TE-transmission error 7-4

LEFT 4-9,:A-50
Using Groups with 7545-800S 4-47

LEFT mode 6-29
if-line feed H-15
LINE 2-18
line command conflicts 3-12
line command I 3-13
line command R 3-26
line commands 3-11

6-19 block copy 3-11
block delete 3-11
block move 3-11
copy line 3-11
copy/move after 3-11
delete line(s) 3-11
insert line(s) 3-11
move line 3-11
repeat line(s) 3-11

line commands C, CC, with A or B 3-22
line commands D and DD 3-15
line commands M, MM, with A or B 3-18
line commands that cross screens 3-12
line edit commands

A 3-18, 3-22, A-2
B 3-18, 3-22, A-7
C 3-22, A-11
CC 3-22, A-14
D 3-15, A-24
DD 3-15, A-25
I 3-13, A-45
M 3-18, A-54
MM 3-18, A-55
R 3-26, A-75

line number 4-4
LINEAR 4-11, A-51
listing file 2-27
load 2-36
load a program 2-28
load file (.ASC) 2-26
loading the self-booting work
diskette 2-21
local constants 4-32
local RS-232-C cable wiring F-1
local RS-422 cable wiring F-2
LOCATE 3-42, A-53
LPT1 2-18

X-8 58X7338

num lock key 3-7
page down key 3-7
page up key 3-7

M, line command 3-18, A-54
main subroutine 5-24
Making Backup Copies of AML/Entry Work
Diskettes 2-17
manip power key 7-5, 7-10
manipulator arm mode, changing 6-29
manipulator stop cycle sequence H-37
manual key 7-6, 7-22, 7-23
manual mode control of axis motors,
Z-axis and gripper 7-24

manual mode motors, Z-axis and
gripper 7-24

manual operation of the
manipulator 7-23
memory key 7-4
Minimum PC requirements 2-2
MM, line command 3-18, A-55
motion commands 4-8

DELAY 4-8
DPMOVE 4-8
GETPART 4-9
GRASP 4-9
LEFT 4-9
LINEAR 4-11
PAYLOAD 4-11, A-65
PMOVE 4-12
RELEASE 4-12
RIGHT 4-13
using motion statements 4-14
XMOVE 4-13, A-102
ZMOVE 4-13
ZONE 4-13

movement subroutines 5-17
MSTATUS 4-19, 4-52, A-56
multiple statements on a line 4-29

I N

nak H-15, H-17
NEW A-58
NEXTPART 4-77, A-59
NOGUARD 4-20, A-61
NUL 2-18, H-8, H-15, H-18
num lock key 3-7
numeric keypad 3-7

del key 3-7
end key 3-7
home key 3-7
ins key 3-7

o.r. reset 7-9
obtaining an additional point 6-22
off line key 7-6, 7-22, 7-23
on line key 7-6, 7-15, 7-20
on/off power switch 2-8, 2-9
Option 0 (AML/Entry menu) 2-24
Option 1 (AML/Entry Menu) 2-25
Option 2 (AML/Entry menu) 2-26
Option 3 (AML/Entry menu) 2-28
Option 4 (AML/Entry menu) 2-29
Option 5 (AML/Entry menu) 2-30
Option 6 (AML/Entry menu) 2-32
Option 7 (AML/Entry menu) 2-33
Option 8 (AML/Entry Menu) 2-34
OR-overrun LED 7-4
OT-over-time LED 7-4
ownership and multiple name
occurrence 4-72

1- 1
I P I

Page compiler directive 4-59, A-109
page down key 3-7
Page Ejects (--%P) 4-59
page up key 3-7
pallet 4-74, A-62
palletization example 4-79
palletizing 4-79
Palletizing Commands 4-77

GETPART 4-77
NEXTPART 4-77
PREVPART 4-78
SETPART 4-78
TESTP 4-78
using palletizing statements 4-79

panel, control 7-3
parameter passing 4-63
parameters in subroutines 4-68
parameters, restrictions 4-64
parts handling subroutines 5-19
PAYLOAD 4-11, A-65
PC configuration 2-3

communications 2-4
display 2-3

Index X-9

keyboard 2-3
printer 2-4
system unit 2-4

PC environmental considerations 2-2
PF-power failure 7-4
phase messages 2-26
PMOVE 4-12, A-30, A-67
power LED 7-3
power-off sequence 7-13
power switch locations 2-8
power-up sequence for teach
exercises 6-15
coarse movement 6-17
controlling digital output from
teach 6-28
entering known coordinates 6-19
precision movement 6-18
retrieving a point from a
program 6-23
return point value to program
(recall) 6-21

powers of two table H-14
precision movement 6-18
Precision of Counters 4-39
PREVPART 4-78, A-68
primary commands, information 3-30
primary edit commands

? 3-46, 3-48, A-107
CANCEL 3-57, A-12
CAPS 3-31, 3-58, A-13
CHANGE 3-36, A-15
DEL 3-56, A-28
FILES 3-46, A-33
FIND 3-32, A-34
GETFILE 3-52, A-37
LOCATE 3-42, A-53
PRINT 3-54, A-70
PUTFILE 3-53, A-73
RENAME 3-50, A-80
SAVE 3-44, A-82

PRINT 3-54, A-70
printer 2-4, 2-9

control lights 2-9
control switches 2-9
on/off power switch 2-9

PRN 2-18
program transmit sequence H-41
Programming System Options menu 2-32
PT A-71
PT's (formals and/or counters) 4-44
PUT 4-88, A-72
PUT transaction H-34, H-43
PUTFILE 3-53, A-73

R

R, line command 3-26, A-75
rapid key 7-7
read instruction address H-46
read transaction H-45
reading program variables H-25

C (control) - records H-26
d (data) - record H-30
data representation H-9
e (end) - record H-30
floating point examples H-10
n (compiled program) - record H-29
p (present configuration) -
record H-33
t (teach) - record H-31
X (execute) H-28

recall memory key 7-5, 7-26
record descriptions H-19

control H-19
data H-19
end H-19
execute H-19
new H-19
present configuration H-19
✓ - (read) record H-19
read H-19
teach H-19

record termination H-7
records and record format H-6

byte count H-6
check sum H-6
data H-6
data rules H-8
identifier H-6
record termination H-7

region 4-13, 4-74, 4-85, 5-7
application flow 5-9
component feeders 5-7
interaction with host computer 5-8
manipulator gripper 5-7
REGION A-76

region command 4-82, 4-84
coordinate generation 4-84
external coordinate system 4-82
roll coordinate 4-85
using REGION 4-85
X and Y coordinates 4-84
XMOVE 4-84
Z coordinate 4-84

RELEASE 4-12, A-79
removing power after teach
exercises 6-30

RENAME 3-50, A-80

X-10 58X7338

•

request to send 8-2, H-2
reserved words and commands

AML/Entry reserved words 4-6
arithmetic functions in
expressions 4-6
commands 4-6
functions 4-6
keywords 4-6

reset error key 7-5
restrictions on parameters 4-64
resuming an application program from a
breakpoint 7-26
retrieving a point from a program 6-23
return home key 7-5, 7-11
return point value to program
(Recall) 6-21

RIGHT 4-13, A-81
Using Groups with 7545-800S 4-47

RIGHT mode 6-29
roll - 7-9
roll + 7-9
Roll coordinate 4-85
Round-off Error 4-39
Row Number of a Part in a Pallet 4-57
RS-232 8-2, F-1, H-2
RS-422 8-2, F-2, H-2
rts-request to send 8-3, H-18

= refid=hcom.Control Request 8-5
rules for calling subroutines 4-66
Run-Time Errors 8-23

I S I

sample application 5-3
SAVE 3-44, A-82
SE-servo error LED 7-4
self-booting AML/Entry work
diskette 2-21
method 1 - power switch off 2-21
method 2 - system RESET 2-22

sensor commands 4-17
CSTATUS 4-17, A-22
GUARDI 4-18, A-43
MSTATUS 4-19, A-56
NOGUARD 4-20, A-61
TESTI 4-20
using sensor statements 4-21
WAITI 4-20, A-99
WHERE 4-21, A-100
WRITEO 4-21

sequences, communications H-36
application startup sequence H-38
debug transaction H-47

get transaction H-44
manipulator stop cycle sequence H-37
program transmit sequence H-41
put transaction H-43
read instruction address H-46
read transaction H-45
reason for data error H-40
unload a partition H-42
write transaction H-48

set name and options 2-32
set system configuration 2-30
SETC 4-41, 4-54, A-83
SETPART 4-78, A-85
setup for your editor exercises 3-9
shift key 3-6
shipped diskettes 2-12
SIN 4-52, A-87
special keys, editor

backspace key 3-6
control key 3-6
enter key 3-6
PrtSc key 3-6
shift key 3-6
tab key 3-6

special keys, teach
Esc 6-6
I 6-6

speed/weight values
7545 Speed/Weight Relationship based
on Z Position E-2
7545-800S Speed/Weight Relationship
based on Z Position E-4
7547 Speed/Weight Relationship based
on Z Position E-5

SQRT 4-52, A-88
start cycle 7-7, 7-25, 7-26
starting an application
program-automatic mode 7-25
statement delimiter 4-5
STATIC A-89
step 7-7
stop and mem 7-7, 7-12
stop button 7-3, 7-10, 7-13
stop cycle 7-7, 7-12
stop key 7-12
stopping the manipulator 7-12

step 7-12
stop 7-12
stop and mem 7-12
stop cycle 7-12

SUBR A-90
subroutine with formal parameters 4-63
subroutine, initialization 5-22
subroutine, main 5-24
subroutine, movement 5-17
subroutines 4-60, 4-65

development of user subroutines 4-61
example of subroutine with formal
parameters 4-63
formal parameters in
subroutines 4-63

ownership and multiple name
occurrence 4-72
parameter passing 4-63
rules for calling subroutines 4-66
system subroutines 4-60
user subroutines 4-60
user subroutines in the AML/Entry
program 4-61
using ITERATE to repeat a
subroutine 4-70
using subroutines 4-65
using subroutines with
parameters 4-68

subroutines with parameters 4-68
subroutines, development for user 4-61
subroutines, global 5-14
subroutines, gripper 5-18
subroutines, parts handling 5-19
subroutines, rules for calling 4-66
subroutines, utility 5-14
switch locations 2-8
symbol file 2-27
system power-up sequence 7-10
system subroutines 4-60
system unit 2-4, 2-8

drive door 2-8
in-use light 2-8
on/off power switch 2-8

I T I

tab key 3-6
TAN 4-53, A-92
taught points 5-10
TE-transmission error 7-4
teach function keys

Fl 6-5
F10 6-5
F2 6-5
F3 6-5
F4 6-5
F5 6-5
F6 6-5
F7 6-5
F8 6-5
F9 6-5

teach mode 6-1, 6-3
teach mode exercises 6-14

teach mode, power-up sequence 6-15
teach responses, IBM manufacturing
system 6-10

teach, controlling digital output 6-28
teach, removing power after teach
exercises 6-30

teach, special keys
Esc 6-6
I 6-6

techniques to simplify programming 4-28
declarations 4-30
declaring constants 4-31
multiple statements on a line 4-29
variables 4-38

TESTC 4-19, 4-43, 4-54, A-93
TESTI 4-20, 4-25, 4-26, 4-53, A-94
testing application programs in manual
mode 7-22
TESTP 4-53, 4-78, A-96
THETA 1- key 7-8
THETA 1+ key 7-8
THETA 2- key 7-8
THETA 2+ key 7-8
transactions H-4

identifier H-4
record H-4

transmit data 8-2, H-2
Treating DI As Integers 4-56
TRUNC 4-53, A-98
typical communications sequences H-36

application startup sequence H-38
debug transaction H-47
get transaction H-44
manipulator stop cycle sequence H-37
program transmit sequence H-41
put transaction H-43
read instruction address H-46
read transaction H-45
reason for data error H-40
unload a partition H-42
write transaction H-48

unload a controller program 2-29
unload a partition H-42
USER 2-18
user subroutines 4-60
user subroutines in the AML/Entry
program 4-61
using constants 4-32
using counter statements 4-43
using declarations 4-30

X-12 58X7338

using flow-of-control commands 4-26
using global constants 4-34
using linear, speed, and precise
motions 4-16
using local constants 4-33
using motion statements 4-14
using move, z-axis, delay and gripper
commands 4-14

using sensor statements 4-21
using the ITERATE command with
aggregates 4-35

utility subroutines 5-14

I V IL_-_1

Values for the LINEAR Command C-1
Values for the PAYLOAD Command D-1
variable identification 4-89
variable structures

counters 4-39
frame of reference 4-82
group 4-45
GROUP keyword A-41
indexing 4-46
pallets 4-79

variables 5-13
variables structures 4-38

writing a simple AML/Entry program 5-3

r- 1
X

X and Y coordinates 4-84
XMOVE 4-13, 4-84, 4-85, A-102
xoff H-15, H-16
xon H-15, H-17
XREF program 2-34, 4-89

Output Listing 4-89
Pallet Listing 4-90
piping output to printer 2-35
Region Listing 4-90

Z

Z-axis and gripper 7-24
Z coordinate 4-84
Z down 7-6
Z up 7-6
ZMOVE 4-13, 4-54, A-104
ZONE 4-13, A-105

i Numerics

W

WAITI 4-20, 4-21, A-99
WHERE 4-21, A-100
work diskettes 2-10, 2-12
write controller data transaction H-48

write transaction
example application sequence H-49

WRITEO 4-21, A-101
writing a complex AML/Entry program 5-7

main application task 5-7
printed circuit card 5-7

7545 Program Speed Values For PAYLOAD
Command D-1
7545 Speed/Weight Relationship based on
Z Position E-2
7545-800S Program Speed Values For
PAYLOAD Command D-2
7545-800S Speed/Weight Relationship
based on Z Position E-4
7547 Program Speed Values For PAYLOAD
Command D-3
7547 Speed/Weight Relationship based on
Z Position E-5

Index X-13

X-14 58X7338

AML/Entry Version 4 User's Guide READER'S
(Second Edition) COMMENT
Order No. 58X7338 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply, in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system. to
your IBM representative or to the IBM branch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

Fold and tape Please Do Not Staple Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
RS Information Development, Department 9C9
P.O. Box 1328
Boca Raton, Florida 33432

NO POSTAGE
NECESSARY
IF MAILED

I N THE
UNITED STATES

IIIMINIM1111111111111111111111111

58X7338
Printed in U.S.A.

0.

Reader's Comment Form

Fold and tape

=MD =MOM. =NM
111■IM =MI MIMS

MO MP OW MOM MEM
IND IINNI/ON =NM am=
Y •1111111110111ft 11=1 SNOW OM
MID MID Mil MI OM WIN

4111111111111 1111•1•01111111111 , ORM NV NNW
MINIM p a •

Please Do Not Staple Fold and tape

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459
	Page 460
	Page 461
	Page 462
	Page 463
	Page 464
	Page 465
	Page 466
	Page 467
	Page 468
	Page 469
	Page 470
	Page 471
	Page 472
	Page 473
	Page 474
	Page 475
	Page 476
	Page 477
	Page 478
	Page 479
	Page 480
	Page 481
	Page 482
	Page 483
	Page 484
	Page 485
	Page 486
	Page 487
	Page 488
	Page 489
	Page 490
	Page 491
	Page 492
	Page 493
	Page 494
	Page 495
	Page 496
	Page 497
	Page 498
	Page 499
	Page 500
	Page 501
	Page 502
	Page 503
	Page 504
	Page 505
	Page 506
	Page 507
	Page 508
	Page 509
	Page 510
	Page 511
	Page 512
	Page 513
	Page 514
	Page 515
	Page 516
	Page 517
	Page 518
	Page 519
	Page 520
	Page 521
	Page 522
	Page 523
	Page 524
	Page 525
	Page 526
	Page 527
	Page 528
	Page 529
	Page 530
	Page 531
	Page 532
	Page 533
	Page 534
	Page 535
	Page 536
	Page 537
	Page 538
	Page 539
	Page 540
	Page 541
	Page 542
	Page 543
	Page 544
	Page 545
	Page 546
	Page 547
	Page 548
	Page 549
	Page 550
	Page 551
	Page 552
	Page 553
	Page 554
	Page 555
	Page 556
	Page 557
	Page 558
	Page 559
	Page 560
	Page 561
	Page 562
	Page 563
	Page 564
	Page 565
	Page 566
	Page 567
	Page 568
	Page 569
	Page 570
	Page 571
	Page 572
	Page 573
	Page 574
	Page 575
	Page 576
	Page 577
	Page 578
	Page 579
	Page 580
	Page 581
	Page 582
	Page 583
	Page 584
	Page 585
	Page 586
	Page 587
	Page 588
	Page 589
	Page 590
	Page 591
	Page 592
	Page 593
	Page 594
	Page 595
	Page 596
	Page 597
	Page 598
	Page 599
	Page 600
	Page 601
	Page 602
	Page 603
	Page 604
	Page 605

